TY - JOUR
T1 - Organic photovoltaic cells based on solvent-annealed, textured titanyl phthalocyanine/c60 heterojunctions
AU - Placencia, Diogenes
AU - Wang, Weining
AU - Shallcross, R. Clayton
AU - Nebesny, Kenneth W.
AU - Brumbach, Michael
AU - Armstrong, Neal R.
N1 - Funding Information:
The research work was supported by the Graduate Research Education Programme of the Higher Education Authority, Ireland.
PY - 2009/6/23
Y1 - 2009/6/23
N2 - Organic photovoltaic cells (OPV) with good near-IR photoactivity are created from highly textured titanyl phthalocyanine (TiOPc)/C60 heterojunctions. Vacuum deposited TiOPc thin films are converted to the near-IR absorbing "Phase II" polymorph using post-deposition solvent annealing. The Phase IρPhase II transition broadens the absorbance spectrum of the Pc film producing absorptivities (α=105 cm-1) from 600-900 nm, along with substantial texturing of the Pc layer. Atomic force microscopy and fieldemission scanning electron microscopy of the solvent annealed films show that the surface roughness of the Pc layers is increased by a factor of greater than 2× as a result of the phase transformation. Current-voltage ( J-V ) responses for white light illumination of ITO (100 nm)/TiOPc (20 nm)/C60 (40 nm)/BCP (10 nm)/Al (100 nm) OPVs show a near doubling of the shortcircuit photocurrent ( JSC), with only a small decrease in open-circuit photopotential (Voc), and a concomitant increase in power conversion efficiency. Incident photon current efficiency (IPCE) plots confirmed the enhanced near-IR OPV activity, with maximum IPCE values of ca. 30% for devices using Phase II-only TiOPc films. UV-photoelectron spectroscopy (UPS) of TiOPc/C60 heterojunctions, for both Phase I and Phase II TiOPc films, suggest that the Phase II polymorph has nearly the same HOMO energy as seen in the Phase I polymorph, and similar frontier orbital energy offsets, EHOMOPc-ELUMOC60, leading to comparable open-circuit photovoltages. These studies suggest new strategies for the formation of higher efficiency OPVs using processing conditions which lead to enhance near-IR absorptivities, and extensive texturing of crystalline donor or acceptor films.
AB - Organic photovoltaic cells (OPV) with good near-IR photoactivity are created from highly textured titanyl phthalocyanine (TiOPc)/C60 heterojunctions. Vacuum deposited TiOPc thin films are converted to the near-IR absorbing "Phase II" polymorph using post-deposition solvent annealing. The Phase IρPhase II transition broadens the absorbance spectrum of the Pc film producing absorptivities (α=105 cm-1) from 600-900 nm, along with substantial texturing of the Pc layer. Atomic force microscopy and fieldemission scanning electron microscopy of the solvent annealed films show that the surface roughness of the Pc layers is increased by a factor of greater than 2× as a result of the phase transformation. Current-voltage ( J-V ) responses for white light illumination of ITO (100 nm)/TiOPc (20 nm)/C60 (40 nm)/BCP (10 nm)/Al (100 nm) OPVs show a near doubling of the shortcircuit photocurrent ( JSC), with only a small decrease in open-circuit photopotential (Voc), and a concomitant increase in power conversion efficiency. Incident photon current efficiency (IPCE) plots confirmed the enhanced near-IR OPV activity, with maximum IPCE values of ca. 30% for devices using Phase II-only TiOPc films. UV-photoelectron spectroscopy (UPS) of TiOPc/C60 heterojunctions, for both Phase I and Phase II TiOPc films, suggest that the Phase II polymorph has nearly the same HOMO energy as seen in the Phase I polymorph, and similar frontier orbital energy offsets, EHOMOPc-ELUMOC60, leading to comparable open-circuit photovoltages. These studies suggest new strategies for the formation of higher efficiency OPVs using processing conditions which lead to enhance near-IR absorptivities, and extensive texturing of crystalline donor or acceptor films.
UR - http://www.scopus.com/inward/record.url?scp=67649225038&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67649225038&partnerID=8YFLogxK
U2 - 10.1002/adfm.200801723
DO - 10.1002/adfm.200801723
M3 - Article
AN - SCOPUS:67649225038
SN - 1616-301X
VL - 19
SP - 1913
EP - 1921
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 12
ER -