Organic charge-transfer compounds: Complex interactions at the nanoscale

Rohan Isaac, Ajith Ashokan, Veaceslav Coropceanu, Laurie McNeil

Research output: Chapter in Book/Report/Conference proceedingConference contribution


First discovered at the beginning of the 20th century but still only partially understood today, organic semiconductors combine the electrical and optical properties typical of inorganic semiconductors with properties such as flexibility, low cost, and structural tunability via chemical modification. They are of significant interest due to their potential for optoelectronic applications such as displays, photosensors and solar cells. Crystalline organic charge-transfer compounds, combinations of two or more organic molecules in which one species acts as a donor of electric charge and the other as an acceptor, could provide new properties or improved performance to increase the range of application of organic semiconductors. Because of the hierarchy of bonding in these molecular crystals, the subtle interplay of electronic and vibrational states has far more influence on their properties than on those of covalent inorganic crystals. The further development of many applications of such compounds is limited by the lack of understanding of exciton dissociation and charge recombination processes and how these processes depend on the electronic and electron-vibration interactions. The charge-transfer states formed at the donor-acceptor interface play a key role, and both experimental and theoretical analyses depend on the arrangement of the donor and acceptor molecules at the nanoscale. By combining optical and transport measurements such as resonant Raman scattering, transient absorption and photocurrent with quantumchemical calculations it is possible to advance our understanding of the physics of these complex materials, paving the way for their application in 21st-century opto-electronic devices.

Original languageEnglish (US)
Title of host publicationQuantum Sensing and Nano Electronics and Photonics XVI
EditorsManijeh Razeghi, Jay S. Lewis, Eric Tournie, Giti A. Khodaparast
ISBN (Electronic)9781510624948
StatePublished - 2019
Externally publishedYes
EventQuantum Sensing and Nano Electronics and Photonics XVI 2019 - San Francisco, United States
Duration: Feb 3 2019Feb 7 2019

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X


ConferenceQuantum Sensing and Nano Electronics and Photonics XVI 2019
Country/TerritoryUnited States
CitySan Francisco


  • Electron-phonon coupling
  • Exciton
  • Organic semiconductor
  • Raman scattering

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Organic charge-transfer compounds: Complex interactions at the nanoscale'. Together they form a unique fingerprint.

Cite this