Optimal disturbances in the supersonic boundary layer past a sharp cone

Simone Zuccher, Ivan Shalaev, Anatoli Tumin, Eli Reshotko

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Optimal disturbances for the supersonic flow past a sharp cone are computed in order to assess the effects due to flow divergence. This geometry is chosen because previously published studies on compressible optimal perturbations for flat plate and sphere did not allow to discriminate the influence of divergence alone, as many factors characterized the growth of disturbances on the sphere (flow divergence, centrifugal forces and dependence of the edge parameters on the local Mach number). Flow-divergence effects result in the presence of an optimal distance from the cone tip for which the optimal gain is the largest possible, showing that divergence effects are stronger in the proximity of the cone tip. By properly rescaling the gain, wavenumber and streamwise coordinate due to the fact that the boundary layer on the sharp cone is √3 thinner than the one over the flat plate, it is found that both the gain and the wavenumber compare fairly well. Moreover, results for the sharp cone collapse into those for the flat plate when the initial location for the computation tends to the final one and when the azimuthal wavenumber is very large. Results show also that a cold wall enhances transient growth.

Original languageEnglish (US)
Title of host publicationCollection of Technical Papers - 44th AIAA Aerospace Sciences Meeting
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
Number of pages16
ISBN (Print)1563478072, 9781563478079
StatePublished - 2006
Event44th AIAA Aerospace Sciences Meeting 2006 - Reno, NV, United States
Duration: Jan 9 2006Jan 12 2006

Publication series

NameCollection of Technical Papers - 44th AIAA Aerospace Sciences Meeting


Other44th AIAA Aerospace Sciences Meeting 2006
Country/TerritoryUnited States
CityReno, NV

ASJC Scopus subject areas

  • Space and Planetary Science
  • Aerospace Engineering


Dive into the research topics of 'Optimal disturbances in the supersonic boundary layer past a sharp cone'. Together they form a unique fingerprint.

Cite this