TY - GEN
T1 - Optimal control of transient flow in natural gas networks
AU - Zlotnik, Anatoly
AU - Chertkov, Michael
AU - Backhaus, Scott
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/2/8
Y1 - 2015/2/8
N2 - We outline a new control system model for the distributed dynamics of compressible gas flow through large-scale pipeline networks with time-varying injections, withdrawals, and control actions of compressors and regulators. The gas dynamics PDE equations over the pipelines, together with boundary conditions at junctions, are reduced using lumped elements to a sparse nonlinear ODE system expressed in vector-matrix form using graph theoretic notation. This system, which we call the reduced network flow (RNF) model, is a consistent discretization of the PDE equations for gas flow. The RNF forms the dynamic constraints for optimal control problems for pipeline systems with known time-varying withdrawals and injections and gas pressure limits throughout the network. The objectives include economic transient compression (ETC) and minimum load shedding (MLS), which involve minimizing compression costs or, if that is infeasible, minimizing the unfulfilled deliveries, respectively. These continuous functional optimization problems are approximated using the Legendre-Gauss-Lobatto (LGL) pseudospectral collocation scheme to yield a family of nonlinear programs, whose solutions approach the optima with finer discretization. Simulation and optimization of time-varying scenarios on an example natural gas transmission network demonstrate the gains in security and efficiency over methods that assume steady-state behavior.
AB - We outline a new control system model for the distributed dynamics of compressible gas flow through large-scale pipeline networks with time-varying injections, withdrawals, and control actions of compressors and regulators. The gas dynamics PDE equations over the pipelines, together with boundary conditions at junctions, are reduced using lumped elements to a sparse nonlinear ODE system expressed in vector-matrix form using graph theoretic notation. This system, which we call the reduced network flow (RNF) model, is a consistent discretization of the PDE equations for gas flow. The RNF forms the dynamic constraints for optimal control problems for pipeline systems with known time-varying withdrawals and injections and gas pressure limits throughout the network. The objectives include economic transient compression (ETC) and minimum load shedding (MLS), which involve minimizing compression costs or, if that is infeasible, minimizing the unfulfilled deliveries, respectively. These continuous functional optimization problems are approximated using the Legendre-Gauss-Lobatto (LGL) pseudospectral collocation scheme to yield a family of nonlinear programs, whose solutions approach the optima with finer discretization. Simulation and optimization of time-varying scenarios on an example natural gas transmission network demonstrate the gains in security and efficiency over methods that assume steady-state behavior.
UR - http://www.scopus.com/inward/record.url?scp=84962033231&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84962033231&partnerID=8YFLogxK
U2 - 10.1109/CDC.2015.7402932
DO - 10.1109/CDC.2015.7402932
M3 - Conference contribution
AN - SCOPUS:84962033231
T3 - Proceedings of the IEEE Conference on Decision and Control
SP - 4563
EP - 4570
BT - 54rd IEEE Conference on Decision and Control,CDC 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 54th IEEE Conference on Decision and Control, CDC 2015
Y2 - 15 December 2015 through 18 December 2015
ER -