Abstract
We present redshifts and optical richness properties of 21 galaxy clusters uniformly selected by their Sunyaev-Zel'dovich (SZ) signature. These clusters, plus an additional, unconfirmed candidate, were detected in a 178 deg 2 area surveyed by the South Pole Telescope (SPT) in 2008. Using griz imaging from the Blanco Cosmology Survey and from pointed Magellan telescope observations, as well as spectroscopy using Magellan facilities, we confirm the existence of clustered red-sequence galaxies, report red-sequence photometric redshifts, present spectroscopic redshifts for a subsample, and derive R 200 radii and M200 masses from optical richness. The clusters span redshifts from 0.15 to greater than 1, with a median redshift of 0.74; three clusters are estimated to be at z > 1. Redshifts inferred from mean red-sequence colors exhibit 2% rms scatter in σz/(1 + z) with respect to the spectroscopic subsample for z > 1. We show that the M200 cluster masses derived from optical richness correlate with masses derived from SPT data and agree with previously derived scaling relations to within the uncertainties. Optical and infrared imaging is an efficient means of cluster identification and redshift estimation in large SZ surveys, and exploiting the same data for richness measurements, as we have done, will be useful for constraining cluster masses and radii for large samples in cosmological analysis.
Original language | English (US) |
---|---|
Pages (from-to) | 1736-1747 |
Number of pages | 12 |
Journal | Astrophysical Journal |
Volume | 723 |
Issue number | 2 |
DOIs | |
State | Published - Nov 10 2010 |
Externally published | Yes |
Keywords
- Cosmology: observations
- Galaxies: clusters: general
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science