Optical calibration and first light for the deformable mirror demonstration mission CubeSat (DeMi)

Rachel Morgan, Ewan Douglas, Gregory Allan, Paula Do Vale Pereira, Jennifer Gubner, Christian Haughwout, Bobby Holden, Thomas Murphy, John Merk, Mark Egan, Gabor Furesz, Danilo Roascio, Yinzi Xin, Kerri Cahoy

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Microelectromechanical systems (MEMS) deformable mirrors (DMs) can provide high-precision wavefront control with a small form-factor, low power device. This makes them a key technology option for future space telescopes requiring adaptive optics for high-contrast imaging of exoplanets with a coronagraph instrument. The Deformable Mirror Demonstration Mission (DeMi) CubeSat payload is a miniature space telescope designed to demonstrate MEMS DM technology in space for the first time. The DeMi payload contains a 50-mm primary mirror, an internal calibration laser source, a 140-actuator MEMS DM from Boston Micromachines Corporation, an image plane wavefront sensor, and a Shack-Hartmann wavefront sensor (SHWFS). The key DeMi payload requirements are to measure individual actuator wavefront displacement contributions to a precision of 12 nm and correct both static and dynamic wavefront errors in space to less than 100-nm RMS error. The DeMi mission will raise the technology readiness level of MEMS DM technology from a five to at least a seven for future space telescope applications. We summarize the DeMi optical payload design, calibration, optical diffraction model, alignment, integration, environmental testing, and preliminary data from in-space operations. Ground testing data show that the DeMi SHWFS can measure individual actuator deflections on the MEMS DM to within 10 nm of interferometric calibration measurements and can meet the 12-nm precision mission requirement for actuator deflection voltages between 0 and 120 V. Payload data from throughout environmental testing show that the MEMS DM and DeMi payload survived environmental testing and provides a valuable baseline to compare with space data. Initial data from space operations show the MEMS DM actuating in space with a median agreement between individual actuator measurements from space and equivalent ground testing data of 12 nm.

Original languageEnglish (US)
Article number024002
JournalJournal of Astronomical Telescopes, Instruments, and Systems
Volume7
Issue number2
DOIs
StatePublished - Apr 1 2021
Externally publishedYes

Keywords

  • Adaptive optics
  • Cubesats
  • Deformable mirrors

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Control and Systems Engineering
  • Instrumentation
  • Astronomy and Astrophysics
  • Mechanical Engineering
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Optical calibration and first light for the deformable mirror demonstration mission CubeSat (DeMi)'. Together they form a unique fingerprint.

Cite this