Online safety calculations for glide-slope recapture

Jonathan Sprinkle, Aaron D. Ames, J. Mikael Eklund, Ian M. Mitchell, S. Shankar Sastry

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

As unmanned aerial vehicles (UAVs) increase in popularity and usage, an appropriate increase in confidence in their behavior is expected. This research addresses a particular portion of the flight of an aircraft (whether autonomous, unmanned, or manned): specifically, the recapture of the glide slope after a wave-off maneuver during landing. While this situation is rare in commercial aircraft, its applicability toward unmanned aircraft has been limited due to the complexity of the calculations of safety of the maneuvers. In this paper, we present several control laws for this glide-slope recapture, and inferences into their convergence to the glide slope, as well as reachability calculations which show their guaranteed safety. We also present a methodology which theoretically allows us to apply these offline-computed safety data to all kinds of unmanned fixed-wing aerial vehicles while online, permitting the use of the controllers to reduce wait times during landing. Finally, we detail the live aircraft application demonstration which was done to show feasibility of the controller, and give the results of offline simulations which show the correctness of online decisions at that demonstration.

Original languageEnglish (US)
Pages (from-to)157-175
Number of pages19
JournalInnovations in Systems and Software Engineering
Volume1
Issue number2
DOIs
StatePublished - Sep 2005

Keywords

  • Code generation
  • Controller synthesis
  • Reachability model analysis
  • Unmanned aerial vehicles (UAVs)

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Online safety calculations for glide-slope recapture'. Together they form a unique fingerprint.

Cite this