One-Step Controlled Synthesis of Size-Tunable Toroidal Gold Particles for Biochemical Sensing

Phuong Diem Nguyen, Xuanru Zhang, Judith Su

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


Controlling the size and shape of nanoparticles is a major goal in materials science. Here we show the fast, 30 min, controlled one-step synthesis of gold particles (tAUPs) with sizes tunable from 350 nm to 1.7 μm by using a mixture of surfactant scaffolds made from sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). The as-synthesized tAUPs have nanospikes that protrude either inward or outward from the ring cavity. The number of nanospikes can be tuned by a two-step temperature change process to create so-called rough tAUPs. The toroidal gold particle structures exhibit surface plasmon extinction peaks in the near-infrared region and demonstrate a high surface-enhanced Raman scattering (SERS) sensitivity for the detection of 4-mercaptobenzoic acid (4-MBA) molecules. The protruding nanospikes significantly enhance the electromagnetic field oscillating inside the ring cavity. This is confirmed through sensitive detection of 4-MBA molecules as well as by simulation. Rough tAUP structures generate the highest sensitivity with an estimated total enhancement (TE) factor of 3.33 × 106, which is 2 orders of magnitude greater than reported by gold nanostars. A variety of different gold structures such as gold nanodendrites, nanowires, and nanochains can be obtained by changing the SDS to CTAB concentration ratios. The unique structures and plasmonic properties of tAUPs hold promise for ultrasensitive biochemical sensing.

Original languageEnglish (US)
Pages (from-to)7839-7847
Number of pages9
JournalACS Applied Nano Materials
Issue number12
StatePublished - Dec 27 2019


  • binary capping
  • mild reduction
  • surface-enhanced Raman scattering
  • surfactant template
  • toroidal gold particles (tAUPs)

ASJC Scopus subject areas

  • General Materials Science


Dive into the research topics of 'One-Step Controlled Synthesis of Size-Tunable Toroidal Gold Particles for Biochemical Sensing'. Together they form a unique fingerprint.

Cite this