## Abstract

For a given gauge group and compact Riemannian two-manifold, it is known that the associated Yang-Mills measure can be defined directly as a finitely additive measure on the space of connections, and this finitely additive measure is invariant with respect to SDiff, the group of all area-preserving diffeomorphisms of the surface. The first question we address is whether this symmetry essentially characterizes the projection of the Yang-Mills measure to the space of gauge equivalence classes. The proper formulation of this question entails the construction of an SDiff-equivariant completion of the space of continuous connections, such that the projection of the Yang-Mills measure to the space of gauge equivalence classes has a countably additive extension. We also consider the coupling of the Yang-Mills measure to determinants of Dirac operators. The basic problems are to prove that the coupled measure is absolutely continuous with respect to the background Yang-Mills measure, to find a reasonable formula for the Radon-Nikodym derivative, and to analyze the action of SDiff.

Original language | English (US) |
---|---|

Pages (from-to) | 315-367 |

Number of pages | 53 |

Journal | Journal of Geometry and Physics |

Volume | 19 |

Issue number | 4 |

DOIs | |

State | Published - Aug 1996 |

## Keywords

- Sdiff
- Wiener measures
- Yang-mills measures
- Zeta determinants

## ASJC Scopus subject areas

- Mathematical Physics
- Physics and Astronomy(all)
- Geometry and Topology

## Fingerprint

Dive into the research topics of 'On Y M_{2}measures and area-preserving diffeomorphisms'. Together they form a unique fingerprint.