TY - JOUR
T1 - On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review
AU - Pořízka, Pavel
AU - Klus, Jakub
AU - Képeš, Erik
AU - Prochazka, David
AU - Hahn, David W.
AU - Kaiser, Jozef
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/10
Y1 - 2018/10
N2 - An implementation of a fast, robust, and effective algorithm is inevitable in modern multivariate data analysis (MVDA). The principal component analysis (PCA) algorithm is becoming popular not only in the spectroscopic community because it complies with the qualities mentioned above. PCA is, therefore, often used for the processing of detected multivariate signal (characteristic spectra). Over the past decade, PCA has been adopted by the Laser-Induced Breakdown Spectroscopy (LIBS) community and the number of scientific articles referring to PCA steadily increases. The interest in PCA is not caused only by the basic need to obtain a fast data visualization on a lower dimensional scale and to inspect the most prominent variables. Most recently, PCA has also been applied to yield unconventional data analyses, i.e. processing of large scale LIBS maps. However, a rapid development of LIBS-related instrumentation and applications has led to some non-uniform methodologies in the implementation and utilization of MVDA, including PCA. Thus, in this work, we critically assess and elaborate on the approaches to utilize PCA in LIBS data processing. The aim of this article is also to derive some implications and to suggest advice in data preprocessing, visualization, dimensionality reduction, model building, classification, quantification and non-conventional multivariate mapping. This review reflects also other MVDA algorithms than PCA and consequently, presented conclusions and recommendations can be generalized.
AB - An implementation of a fast, robust, and effective algorithm is inevitable in modern multivariate data analysis (MVDA). The principal component analysis (PCA) algorithm is becoming popular not only in the spectroscopic community because it complies with the qualities mentioned above. PCA is, therefore, often used for the processing of detected multivariate signal (characteristic spectra). Over the past decade, PCA has been adopted by the Laser-Induced Breakdown Spectroscopy (LIBS) community and the number of scientific articles referring to PCA steadily increases. The interest in PCA is not caused only by the basic need to obtain a fast data visualization on a lower dimensional scale and to inspect the most prominent variables. Most recently, PCA has also been applied to yield unconventional data analyses, i.e. processing of large scale LIBS maps. However, a rapid development of LIBS-related instrumentation and applications has led to some non-uniform methodologies in the implementation and utilization of MVDA, including PCA. Thus, in this work, we critically assess and elaborate on the approaches to utilize PCA in LIBS data processing. The aim of this article is also to derive some implications and to suggest advice in data preprocessing, visualization, dimensionality reduction, model building, classification, quantification and non-conventional multivariate mapping. This review reflects also other MVDA algorithms than PCA and consequently, presented conclusions and recommendations can be generalized.
UR - http://www.scopus.com/inward/record.url?scp=85048439338&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048439338&partnerID=8YFLogxK
U2 - 10.1016/j.sab.2018.05.030
DO - 10.1016/j.sab.2018.05.030
M3 - Review article
AN - SCOPUS:85048439338
SN - 0584-8547
VL - 148
SP - 65
EP - 82
JO - Spectrochimica Acta - Part B Atomic Spectroscopy
JF - Spectrochimica Acta - Part B Atomic Spectroscopy
ER -