TY - JOUR
T1 - ON the COMPOSITION of YOUNG, DIRECTLY IMAGED GIANT PLANETS
AU - Moses, J. I.
AU - Marley, M. S.
AU - Zahnle, K.
AU - Line, M. R.
AU - Fortney, J. J.
AU - Barman, T. S.
AU - Visscher, C.
AU - Lewis, N. K.
AU - Wolff, M. J.
N1 - Publisher Copyright:
© 2016. The American Astronomical Society. All rights reserved..
PY - 2016/10/1
Y1 - 2016/10/1
N2 - The past decade has seen significant progress on the direct detection and characterization of young, self-luminous giant planets at wide orbital separations from their host stars. Some of these planets show evidence for disequilibrium processes like transport-induced quenching in their atmospheres; photochemistry may also be important, despite the large orbital distances. These disequilibrium chemical processes can alter the expected composition, spectral behavior, thermal structure, and cooling history of the planets, and can potentially confuse determinations of bulk elemental ratios, which provide important insights into planet-formation mechanisms. Using a thermo/photochemical kinetics and transport model, we investigate the extent to which disequilibrium chemistry affects the composition and spectra of directly imaged giant exoplanets. Results for specific "young Jupiters" such as HR 8799 b and 51 Eri b are presented, as are general trends as a function of planetary effective temperature, surface gravity, incident ultraviolet flux, and strength of deep atmospheric convection. We find that quenching is very important on young Jupiters, leading to CO/CH4 and N2/NH3 ratios much greater than, and H2O mixing ratios a factor of a few less than, chemical-equilibrium predictions. Photochemistry can also be important on such planets, with CO2 and HCN being key photochemical products. Carbon dioxide becomes a major constituent when stratospheric temperatures are low and recycling of water via the + OH reaction becomes kinetically stifled. Young Jupiters with effective temperatures K are in a particularly interesting photochemical regime that differs from both transiting hot Jupiters and our own solar-system giant planets.
AB - The past decade has seen significant progress on the direct detection and characterization of young, self-luminous giant planets at wide orbital separations from their host stars. Some of these planets show evidence for disequilibrium processes like transport-induced quenching in their atmospheres; photochemistry may also be important, despite the large orbital distances. These disequilibrium chemical processes can alter the expected composition, spectral behavior, thermal structure, and cooling history of the planets, and can potentially confuse determinations of bulk elemental ratios, which provide important insights into planet-formation mechanisms. Using a thermo/photochemical kinetics and transport model, we investigate the extent to which disequilibrium chemistry affects the composition and spectra of directly imaged giant exoplanets. Results for specific "young Jupiters" such as HR 8799 b and 51 Eri b are presented, as are general trends as a function of planetary effective temperature, surface gravity, incident ultraviolet flux, and strength of deep atmospheric convection. We find that quenching is very important on young Jupiters, leading to CO/CH4 and N2/NH3 ratios much greater than, and H2O mixing ratios a factor of a few less than, chemical-equilibrium predictions. Photochemistry can also be important on such planets, with CO2 and HCN being key photochemical products. Carbon dioxide becomes a major constituent when stratospheric temperatures are low and recycling of water via the + OH reaction becomes kinetically stifled. Young Jupiters with effective temperatures K are in a particularly interesting photochemical regime that differs from both transiting hot Jupiters and our own solar-system giant planets.
KW - planetary systems
KW - planets and satellites: atmospheres
KW - planets and satellites: composition
KW - planets and satellites: gaseous planets
KW - planets and satellites: individual (51 Eri b, HR 8799 b)
UR - http://www.scopus.com/inward/record.url?scp=84991267532&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84991267532&partnerID=8YFLogxK
U2 - 10.3847/0004-637X/829/2/66
DO - 10.3847/0004-637X/829/2/66
M3 - Article
AN - SCOPUS:84991267532
SN - 0004-637X
VL - 829
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 66
ER -