On the Capacity of Leaky Private Information Retrieval

Research output: Chapter in Book/Report/Conference proceedingConference contribution

24 Scopus citations

Abstract

Private information retrieval (PIR) allows users to retrieve data from databases without revealing the identity of that data. An extensive body of works has investigated efficient schemes to achieve computational and information-theoretic privacy. The latter guarantees that no information is revealed to the databases, irrespective of their computational power. Although information-theoretic PIR (IT-PIR) provides a strong privacy guarantee, it can be too taxing for certain applications. In this paper, we initiate the study of leaky private information retrieval (L-PIR), where a bounded amount of privacy leakage is allowed and measured through a parameter ϵ. The classical IT-PIR formulation is obtained by setting ϵ = 0, and for ϵ > 0, we explore the opportunities offered for reducing the download cost. We derive new upper and lower bounds on the download cost of L-PIR for any arbitrary ϵ, any number of messages K, and for N = 2 databases.

Original languageEnglish (US)
Title of host publication2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1262-1266
Number of pages5
ISBN (Electronic)9781538692912
DOIs
StatePublished - Jul 2019
Event2019 IEEE International Symposium on Information Theory, ISIT 2019 - Paris, France
Duration: Jul 7 2019Jul 12 2019

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2019-July
ISSN (Print)2157-8095

Conference

Conference2019 IEEE International Symposium on Information Theory, ISIT 2019
Country/TerritoryFrance
CityParis
Period7/7/197/12/19

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'On the Capacity of Leaky Private Information Retrieval'. Together they form a unique fingerprint.

Cite this