On-sky, real-time optical gain calibration on MagAO-X using incoherent speckles

Eden A. McEwen, Jared R. Males, Olivier Guyon, Sebastiaan Y. Haffert, Joseph D. Long, Laird M. Close, Kyle Van Gorkom, Jennifer Lumbres, Alexander D. Hedglen, Lauren Schatz, Maggie Y. Kautz, Logan A. Pearce, Jay Kueny, Avalon L. McLeod, Warren B. Foster, Jialin Li, Roz Roberts, Alycia J. Weinburger

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

The next generation of extreme adaptive optics (AO) must be calibrated exceptionally well to achieve the desired contrast for ground-based direct imaging exoplanet targets. Current wavefront sensing and control system responses deviate from lab calibration throughout the night due to non linearities in the wavefront sensor (WFS) and signal loss. One cause of these changes is the optical gain (OG) effect, which shows that the difference between actual and reconstructed wavefronts is sensitive to residual wavefront errors from partially corrected turbulence. This work details on-sky measurement of optical gain on MagAO-X, an extreme AO system on the Magellan Clay 6.5m. We ultimately plan on using a method of high-temporal frequency probes on our deformable mirror to track optical gain on the Pyramid WFS. The high-temporal frequency probes, used to create PSF copies at 10-22 λ/D, are already routinely used by our system for coronagraph centering and post-observation calibration. This method is supported by the OG measurements from the modal response, measured simultaneously by sequenced pokes of each mode. When tracked with DIMM measurements, optical gain calibrations show a clear dependence on Strehl Ratio, and this relationship is discussed. This more accurate method of calibration is a crucial next step in enabling higher fidelity correction and post processing techniques for direct imaging ground based systems.

Original languageEnglish (US)
Title of host publicationAdaptive Optics Systems IX
EditorsKathryn J. Jackson, Dirk Schmidt, Elise Vernet
PublisherSPIE
ISBN (Electronic)9781510675179
DOIs
StatePublished - 2024
EventAdaptive Optics Systems IX 2024 - Yokohama, Japan
Duration: Jun 16 2024Jun 22 2024

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume13097
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceAdaptive Optics Systems IX 2024
Country/TerritoryJapan
CityYokohama
Period6/16/246/22/24

Keywords

  • Adaptive Optics
  • Calibraiton
  • Optical Gain
  • Pyramid WFS

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'On-sky, real-time optical gain calibration on MagAO-X using incoherent speckles'. Together they form a unique fingerprint.

Cite this