Abstract
The Spitzer Space Telescope (formally known as SIRTF) was successfully launched on August 25, 2003, and has completed its initial in-orbit checkout and science validation and calibration period. The measured performance of the observatory has met or exceeded all of its high-level requirements, it entered normal operations in January 2004, and is returning high-quality science data. A superfluid-helium cooled 85 cm diameter telescope provides extremely low infrared backgrounds and feeds three science instruments covering wavelengths ranging from 3.6 to 160 microns. The telescope optical quality is excellent, providing diffraction-limited performance down to wavelengths below 6.5 microns. Based on the first helium mass and boil-off rate measurements, a cryogenic lifetime in excess of 5 years is expected. This presentation will provide a summary of the overall performance of the observatory, with an emphasis on those performance parameters that have the greatest impact on its ultimate science return.
Original language | English (US) |
---|---|
Pages (from-to) | 38-49 |
Number of pages | 12 |
Journal | Proceedings of SPIE - The International Society for Optical Engineering |
Volume | 5487 |
Issue number | PART 1 |
DOIs | |
State | Published - 2004 |
Event | Optical, Infrared, and Millimeter Space Telecopes - Glasgow, United Kingdom Duration: Jun 21 2004 → Jun 25 2004 |
Keywords
- Astronomy
- Infrared
- Spitzer Mission
- Telescope
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Computer Science Applications
- Applied Mathematics
- Electrical and Electronic Engineering