@inproceedings{65328ea069f84b9fa86b12af3e0e3780,
title = "Numerical simulation of transient boiling convection in microchannels",
abstract = "Two-phase microchannel heat exchangers are receiving increasing attention from the microprocessor industry as power density levels in microchips increase. Previous numerical investigations of convective boiling in microchannels assumed steady flow within the channels. However, experimental data shows that two-phase flows in microchannels are highly transient even under steady heat loads. Little work has been done to model the dynamics associated with vapor generation in microchannels. The present work simulates the periodic distribution of vapor within microchannels filled with water by solving one-dimensional homogeneous equations for the mass, momentum and energy transport in conjunction with a transient wall conduction equation. A wall superheat constraint is incorporated to account for the excess superheat temperature required for bubble nucleation. Boiling events reduce the local wall temperature and change the pressure and enthalpy distributions within the flow. The transient pressure fluctuations predicted here are consistent with those observed in experiments. This study provides insight into the significance of bubble nucleation for forced convective boiling in microchannels and will be useful for the optimization of microchannel heat exchangers.",
keywords = "Bubble generation, Microchannel heat exchanger, Transient simulation, Two-phase flow",
author = "Fogg, {D. W.} and Koo, {J. M.} and L. Jiang and Goodson, {K. E.}",
year = "2003",
doi = "10.1115/ht2003-47300",
language = "English (US)",
isbn = "0791836940",
series = "Proceedings of the ASME Summer Heat Transfer Conference",
publisher = "American Society of Mechanical Engineers",
pages = "459--465",
booktitle = "Proceedings of the 2003 ASME Summer Heat Transfer Conference, Volume 2",
note = "2003 ASME Summer Heat Transfer Conference (HT2003) ; Conference date: 21-07-2003 Through 23-07-2003",
}