TY - GEN
T1 - Numerical simulation and stability analysis of thin flexible micro film for thermotunneling application
AU - Enikov, Eniko T.
AU - Ganji, Mahdi
PY - 2012
Y1 - 2012
N2 - Combined thermionic emission and tunneling of hot elec- Trons (thermo-tunneling) has emerged as a potential new solid- state cooling technology. Practical implementation of thermo- Tunneling, however, requires the formation of a nanometer-sized gap spanning macroscopically significant surfaces. Thermo- Tunneling is a term used to describe combined emission of hot electrons (thermionic emission) and tunneling of electrons through a narrow potential barrier between two surfaces (field emission). Thermo-tunneling of hot electrons across a few- nanometer gap has application to vacuum electronics, flat panel displays, and holds great potential in thermo-electric cooling and energy generation. Development of new thermo-tunneling applications requires creation of a stable nanometer gap be- Tween two surfaces. This presentation is focused on our effort to investigate the stability of the the thin flexible structure under electrostatic and lorenz forces opposing each other. In this pre- sentation, we report the result of numerical simulation with some mathematical simplifications. The mathematical model used for the numerical simulation is well studied in the literature. Us- ing forth-order partial differential beam equation, we studied the steady state solutions of the thermo-tunneling beam model using Galerkin method.Essential output parameters of the model in- clude a central contact area measured by its length (delta) and the thermo-tunneling current. Both parameters are determined as a function of the externally applied external potential and magnetic field. Numerical solutions of the model show two possi- ble operating modes: (1) symmetric deformation with negligibly small current; and (2) asymmetric mode where the B-field con- Trols the current and contact area. Under practical values for the externally applied magnetic and electric fields, it has been shown that the second mode is only possible for electrode with very low work functions, e.g. below 0.5 eV. Therefore, novel materials such as Diamond-like carbon films are likely to be essential in thermo-tunneling applications.
AB - Combined thermionic emission and tunneling of hot elec- Trons (thermo-tunneling) has emerged as a potential new solid- state cooling technology. Practical implementation of thermo- Tunneling, however, requires the formation of a nanometer-sized gap spanning macroscopically significant surfaces. Thermo- Tunneling is a term used to describe combined emission of hot electrons (thermionic emission) and tunneling of electrons through a narrow potential barrier between two surfaces (field emission). Thermo-tunneling of hot electrons across a few- nanometer gap has application to vacuum electronics, flat panel displays, and holds great potential in thermo-electric cooling and energy generation. Development of new thermo-tunneling applications requires creation of a stable nanometer gap be- Tween two surfaces. This presentation is focused on our effort to investigate the stability of the the thin flexible structure under electrostatic and lorenz forces opposing each other. In this pre- sentation, we report the result of numerical simulation with some mathematical simplifications. The mathematical model used for the numerical simulation is well studied in the literature. Us- ing forth-order partial differential beam equation, we studied the steady state solutions of the thermo-tunneling beam model using Galerkin method.Essential output parameters of the model in- clude a central contact area measured by its length (delta) and the thermo-tunneling current. Both parameters are determined as a function of the externally applied external potential and magnetic field. Numerical solutions of the model show two possi- ble operating modes: (1) symmetric deformation with negligibly small current; and (2) asymmetric mode where the B-field con- Trols the current and contact area. Under practical values for the externally applied magnetic and electric fields, it has been shown that the second mode is only possible for electrode with very low work functions, e.g. below 0.5 eV. Therefore, novel materials such as Diamond-like carbon films are likely to be essential in thermo-tunneling applications.
UR - http://www.scopus.com/inward/record.url?scp=84887316036&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84887316036&partnerID=8YFLogxK
U2 - 10.1115/IMECE2012-86980
DO - 10.1115/IMECE2012-86980
M3 - Conference contribution
AN - SCOPUS:84887316036
SN - 9780791845202
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
SP - 407
EP - 413
BT - ASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012
T2 - ASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012
Y2 - 9 November 2012 through 15 November 2012
ER -