Numerical simulation and stability analysis of thin flexible micro film for thermotunneling application

Eniko T. Enikov, Mahdi Ganji

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Combined thermionic emission and tunneling of hot elec- Trons (thermo-tunneling) has emerged as a potential new solid- state cooling technology. Practical implementation of thermo- Tunneling, however, requires the formation of a nanometer-sized gap spanning macroscopically significant surfaces. Thermo- Tunneling is a term used to describe combined emission of hot electrons (thermionic emission) and tunneling of electrons through a narrow potential barrier between two surfaces (field emission). Thermo-tunneling of hot electrons across a few- nanometer gap has application to vacuum electronics, flat panel displays, and holds great potential in thermo-electric cooling and energy generation. Development of new thermo-tunneling applications requires creation of a stable nanometer gap be- Tween two surfaces. This presentation is focused on our effort to investigate the stability of the the thin flexible structure under electrostatic and lorenz forces opposing each other. In this pre- sentation, we report the result of numerical simulation with some mathematical simplifications. The mathematical model used for the numerical simulation is well studied in the literature. Us- ing forth-order partial differential beam equation, we studied the steady state solutions of the thermo-tunneling beam model using Galerkin method.Essential output parameters of the model in- clude a central contact area measured by its length (delta) and the thermo-tunneling current. Both parameters are determined as a function of the externally applied external potential and magnetic field. Numerical solutions of the model show two possi- ble operating modes: (1) symmetric deformation with negligibly small current; and (2) asymmetric mode where the B-field con- Trols the current and contact area. Under practical values for the externally applied magnetic and electric fields, it has been shown that the second mode is only possible for electrode with very low work functions, e.g. below 0.5 eV. Therefore, novel materials such as Diamond-like carbon films are likely to be essential in thermo-tunneling applications.

Original languageEnglish (US)
Title of host publicationASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012
Pages407-413
Number of pages7
EditionPARTS A AND B
DOIs
StatePublished - 2012
EventASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012 - Houston, TX, United States
Duration: Nov 9 2012Nov 15 2012

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
NumberPARTS A AND B
Volume4

Other

OtherASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012
Country/TerritoryUnited States
CityHouston, TX
Period11/9/1211/15/12

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Numerical simulation and stability analysis of thin flexible micro film for thermotunneling application'. Together they form a unique fingerprint.

Cite this