Numerical investigation of the control of the secondary instability process in boundary layers

L. D. Kral, H. F. Fasel

Research output: Contribution to conferencePaperpeer-review

3 Scopus citations


A numerical model has been developed for investigating boundary layer transition control for a flat plate boundary layer. Active control of a periodically forced boundary layer in an incompressible fluid is studied using surface heating techniques. The spatially evolving boundary layer is simulated. The Navier-Stokes and energy equations are integrated using a fully implicit finite difference/spectral method. Temperature perturbations are introduced locally along finite heater strips to directly attenuate the instability waves in the flow. A feedback control loop is employed in which a downstream sensor is used to monitor wall shear stress fluctuations. Active control of small amplitude two-dimensional and three-dimensional disturbances is numerically simulated. With proper phase control, in phase reinforcement and out of phase attenuation are demonstrated. A receptivity study of the localized temperature perturbations is made. It is shown that narrow heater strips are more receptive in that they maximize the amplitude level of the disturbances in the flow. Active control of the early stages of the fundamental breakdown process is also numerically simulated. Control is achieved with either two-dimensional or three-dimensional control inputs.

Original languageEnglish (US)
StatePublished - 1989
EventAIAA 2nd Shear Flow Conference, 1989 - Tempe, United States
Duration: Mar 13 1989Mar 16 1989


OtherAIAA 2nd Shear Flow Conference, 1989
Country/TerritoryUnited States

ASJC Scopus subject areas

  • General Engineering


Dive into the research topics of 'Numerical investigation of the control of the secondary instability process in boundary layers'. Together they form a unique fingerprint.

Cite this