TY - GEN
T1 - Numerical investigation of oblique-shock/boundary-layer interactions in supersonic flows
AU - Sivasubramanian, Jayahar
AU - Fasel, Hermann F.
N1 - Publisher Copyright:
© 2016, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2016
Y1 - 2016
N2 - The interaction between an impinging oblique shock–wave and a laminar boundary layer on a flat plate is investigated using direct numerical simulations. The two–dimensional separation bubble resulting from the shock boundary layer interaction (SBLI) at freestream Mach number of 2.3 for the approach flow is investigated in detail. The flow parameters used for the present investigation match the laboratory conditions in the experiments conducted at the University of Arizona (UA). In addition to the steady flow field calculations, in order to study the linear stability behavior of the separation bubble, the response to low– amplitude disturbances is investigated using linearized Navier Stokes calculations. For comparison, both the development of two–dimensional and three–dimensional (oblique) disturbances are studied with and without the impinging oblique shock. Furthermore, the effects of the shock incidence angle and Reynolds number are also investigated. Finally, three–dimensional direct numerical simulations were performed in order to investigate the laminar-turbulent transition process in the presence of a laminar separation bubble generated by an impinging shock–wave.
AB - The interaction between an impinging oblique shock–wave and a laminar boundary layer on a flat plate is investigated using direct numerical simulations. The two–dimensional separation bubble resulting from the shock boundary layer interaction (SBLI) at freestream Mach number of 2.3 for the approach flow is investigated in detail. The flow parameters used for the present investigation match the laboratory conditions in the experiments conducted at the University of Arizona (UA). In addition to the steady flow field calculations, in order to study the linear stability behavior of the separation bubble, the response to low– amplitude disturbances is investigated using linearized Navier Stokes calculations. For comparison, both the development of two–dimensional and three–dimensional (oblique) disturbances are studied with and without the impinging oblique shock. Furthermore, the effects of the shock incidence angle and Reynolds number are also investigated. Finally, three–dimensional direct numerical simulations were performed in order to investigate the laminar-turbulent transition process in the presence of a laminar separation bubble generated by an impinging shock–wave.
UR - http://www.scopus.com/inward/record.url?scp=85088203030&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85088203030&partnerID=8YFLogxK
U2 - 10.2514/6.2016-3646
DO - 10.2514/6.2016-3646
M3 - Conference contribution
AN - SCOPUS:85088203030
SN - 9781624104367
T3 - 46th AIAA Fluid Dynamics Conference
BT - 46th AIAA Fluid Dynamics Conference
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - 46th AIAA Fluid Dynamics Conference, 2016
Y2 - 13 June 2016 through 17 June 2016
ER -