@inproceedings{b6390c6073a349a7828c96bd76f1415e,
title = "Numerical investigation of nonlinear entropy-layer instability waves for hypersonic boundary-layers",
abstract = "Direct Numerical Simulations (DNS) were carried out to investigate the laminar-turbulent transition for a blunt (right) cone (7◦ half-angle) at Mach 5.9 and zero angle of attack. First, (linear) stability calculations were carried out employing the same DNS Navier-Stokes solver and using very small disturbance amplitudes in order to capture the linear disturbance development. Contrary to standard Linear Stability Theory results, these investigations revealed a strong “linear” instability in the entropy layer region for a very short downstream distance for oblique disturbance waves with spatial growth rates far exceeding those of second mode disturbances. This linear instability behavior was not captured with conventional LST and/or the Parabolized Stability Equations (PSE) approach. Secondly, a highly-resolved nonlinear breakdown simulation was performed using high-fidelity DNS. The DNS results showed that linearly unstable oblique disturbance waves, when excited with large enough amplitudes, lead to a rapid breakdown and complete laminar-turbulent transition in the entropy layer just downstream of the blunted nose.",
author = "Hartman, {Andrew B.} and Christoph Hader and Fasel, {Hermann F.}",
note = "Publisher Copyright: {\textcopyright} 2020, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.; AIAA AVIATION 2020 FORUM ; Conference date: 15-06-2020 Through 19-06-2020",
year = "2020",
doi = "10.2514/6.2020-3085",
language = "English (US)",
isbn = "9781624105982",
series = "AIAA AVIATION 2020 FORUM",
publisher = "American Institute of Aeronautics and Astronautics Inc, AIAA",
booktitle = "AIAA AVIATION 2020 FORUM",
}