TY - JOUR
T1 - Numerical investigation of GHz repetition rate fundamentally mode-locked all-fiber lasers
AU - Ma, Yunxiu
AU - Zhu, Xiushan
AU - Yang, Luyun
AU - Tong, Minghong
AU - Norwood, Robert A.
AU - Wei, Huai
AU - Chu, Yingbo
AU - Li, Haiqing
AU - Dai, Nengli
AU - Peng, Jinggang
AU - Li, Jinyan
AU - Peyghambarian, Nasser
N1 - Publisher Copyright:
© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
PY - 2019
Y1 - 2019
N2 - GHz repetition rate fundamentally mode-locked lasers have attracted great interest for a variety of scientific and practical applications. A passively mode-locked laser in all-fiber format has the advantages of high stability, maintenance-free operation, super compactness, and reliability. In this paper, we present numerical investigation on passive mode-locking of all-fiber lasers operating at repetition rates of 1-20 GHz. Our calculations show that the reflectivity of the output coupler, the small signal gain of the doped fiber, the total net cavity dispersion, and the modulation depth of the saturable absorber are the key parameters for producing stable fundamentally mode-locked pulses at GHz repetition rates in very short all-fiber linear cavities. The instabilities of GHz repetition rate fundamentally mode-locked all-fiber lasers with different parameters were calculated and analyzed. Compared to a regular MHz repetition rate mode-locked all-fiber laser, the pump power range for the mode-locking of a GHz repetition rate all-fiber laser is much larger due to the several orders of magnitude lower accumulated nonlinearity in the fiber cavity. The presented numerical study provides valuable guidance for the design and development of highly stable mode-locked all-fiber lasers operating at GHz repetition rates.
AB - GHz repetition rate fundamentally mode-locked lasers have attracted great interest for a variety of scientific and practical applications. A passively mode-locked laser in all-fiber format has the advantages of high stability, maintenance-free operation, super compactness, and reliability. In this paper, we present numerical investigation on passive mode-locking of all-fiber lasers operating at repetition rates of 1-20 GHz. Our calculations show that the reflectivity of the output coupler, the small signal gain of the doped fiber, the total net cavity dispersion, and the modulation depth of the saturable absorber are the key parameters for producing stable fundamentally mode-locked pulses at GHz repetition rates in very short all-fiber linear cavities. The instabilities of GHz repetition rate fundamentally mode-locked all-fiber lasers with different parameters were calculated and analyzed. Compared to a regular MHz repetition rate mode-locked all-fiber laser, the pump power range for the mode-locking of a GHz repetition rate all-fiber laser is much larger due to the several orders of magnitude lower accumulated nonlinearity in the fiber cavity. The presented numerical study provides valuable guidance for the design and development of highly stable mode-locked all-fiber lasers operating at GHz repetition rates.
UR - http://www.scopus.com/inward/record.url?scp=85065829399&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85065829399&partnerID=8YFLogxK
U2 - 10.1364/OE.27.014487
DO - 10.1364/OE.27.014487
M3 - Article
C2 - 31163897
AN - SCOPUS:85065829399
SN - 1094-4087
VL - 27
SP - 14487
EP - 14504
JO - Optics Express
JF - Optics Express
IS - 10
ER -