TY - JOUR
T1 - Nrf2 induces cisplatin resistance through activation of autophagy in ovarian carcinoma
AU - Bao, Ling Jie
AU - Jaramillo, Melba C.
AU - Zhang, Zhen Bo
AU - Zheng, Yun Xi
AU - Yao, Ming
AU - Zhang, Donna D.
AU - Yi, Xiao Fang
PY - 2014
Y1 - 2014
N2 - Cisplatin resistance is a major problem affecting ovarian carcinoma treatment. NF-E2-related factor 2 (Nrf2), a nuclear transcription factor, plays an important role in chemotherapy resistance. However, the underlying mechanism by which Nrf2 mediates cisplatin chemoresistance is unclear. Methods: The human ovarian carcinoma cell line, A2780, and its cisplatin-resistant variant, A2780cp were cultivated. Cell viability was determined with WST-8 assay. Western blot was applied to detect the expression of Nrf2, Nrf2 target genes, and autophagy-related proteins. RNA interference was used to knock down target genes. Annexin V and propidium iodide (PI) staining was utilized to quantify apoptosis. The ultrastructural analysis of autophagosomes was performed by transmission electron microscopy (TEM). Results: Nrf2 and its targeting genes, NQO1 and HO-1, are overexpressed in A2780cp cells compared with A2780 cells. Knocking down Nrf2 sensitized A2780cp cells to cisplatin treatment and decreased autophagy-related genes, Atg3, Atg6, Atg12 and p62 in both mRNA and protein levels. Furthermore, we demonstrated that in both cell lines cisplatin could induce the formation of autophagosomes and upregulate the expression of autophagy-related genes Atg3, Atg6 and Atg12. Treatment with an autophagy inhibitor, 3-Methyladenine (3-MA), or beclin 1 siRNA enhanced cisplatin-induced cell death in A2780cp cells, suggesting that inhibition of autophagy renders resistant cells to be more sensitive to cisplatin. Taken together, Nrf2 signaling may regulate cisplatin resistance by activating autophagy. Conclusions: Nrf2-activated autophagy may function as a novel mechanism causing cisplatin-resistance.
AB - Cisplatin resistance is a major problem affecting ovarian carcinoma treatment. NF-E2-related factor 2 (Nrf2), a nuclear transcription factor, plays an important role in chemotherapy resistance. However, the underlying mechanism by which Nrf2 mediates cisplatin chemoresistance is unclear. Methods: The human ovarian carcinoma cell line, A2780, and its cisplatin-resistant variant, A2780cp were cultivated. Cell viability was determined with WST-8 assay. Western blot was applied to detect the expression of Nrf2, Nrf2 target genes, and autophagy-related proteins. RNA interference was used to knock down target genes. Annexin V and propidium iodide (PI) staining was utilized to quantify apoptosis. The ultrastructural analysis of autophagosomes was performed by transmission electron microscopy (TEM). Results: Nrf2 and its targeting genes, NQO1 and HO-1, are overexpressed in A2780cp cells compared with A2780 cells. Knocking down Nrf2 sensitized A2780cp cells to cisplatin treatment and decreased autophagy-related genes, Atg3, Atg6, Atg12 and p62 in both mRNA and protein levels. Furthermore, we demonstrated that in both cell lines cisplatin could induce the formation of autophagosomes and upregulate the expression of autophagy-related genes Atg3, Atg6 and Atg12. Treatment with an autophagy inhibitor, 3-Methyladenine (3-MA), or beclin 1 siRNA enhanced cisplatin-induced cell death in A2780cp cells, suggesting that inhibition of autophagy renders resistant cells to be more sensitive to cisplatin. Taken together, Nrf2 signaling may regulate cisplatin resistance by activating autophagy. Conclusions: Nrf2-activated autophagy may function as a novel mechanism causing cisplatin-resistance.
KW - Autophagy
KW - Chemoresistance
KW - Cisplatin
KW - Nrf2
KW - Ovarian carcinoma
UR - http://www.scopus.com/inward/record.url?scp=84899510313&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84899510313&partnerID=8YFLogxK
M3 - Article
C2 - 24817946
AN - SCOPUS:84899510313
SN - 1936-2625
VL - 7
SP - 1502
EP - 1513
JO - International Journal of Clinical and Experimental Pathology
JF - International Journal of Clinical and Experimental Pathology
IS - 4
ER -