TY - JOUR
T1 - Novel sphingosine kinase-1 inhibitor, LCL351, reduces immune responses in murine DSS-induced colitis
AU - Pulkoski-Gross, Michael J.
AU - Uys, Joachim D.
AU - Orr-Gandy, K. Alexa
AU - Coant, Nicolas
AU - Bialkowska, Agnieszka B.
AU - Szulc, Zdzislaw M.
AU - Bai, Aiping
AU - Bielawska, Alicja
AU - Townsend, Danyelle M.
AU - Hannun, Yusuf A.
AU - Obeid, Lina M.
AU - Snider, Ashley J.
N1 - Publisher Copyright:
© 2017
PY - 2017/5/1
Y1 - 2017/5/1
N2 - Sphingosine-1-phosphate (S1P) is a biologically active sphingolipid metabolite which has been implicated in many diseases including cancer and inflammatory diseases. Recently, sphingosine kinase 1 (SK1), one of the isozymes which generates S1P, has been implicated in the development and progression of inflammatory bowel disease (IBD). Based on our previous work, we set out to determine the efficacy of a novel SK1 selective inhibitor, LCL351, in a murine model of IBD. LCL351 selectively inhibits SK1 both in vitro and in cells. LCL351, which accumulates in relevant tissues such as colon, did not have any adverse side effects in vivo. In mice challenged with dextran sodium sulfate (DSS), a murine model for IBD, LCL351 treatment protected from blood loss and splenomegaly. Additionally, LCL351 treatment reduced the expression of pro-inflammatory markers, and reduced neutrophil infiltration in colon tissue. Our results suggest inflammation associated with IBD can be targeted pharmacologically through the inhibition and degradation of SK1. Furthermore, our data also identifies desirable properties of SK1 inhibitors.
AB - Sphingosine-1-phosphate (S1P) is a biologically active sphingolipid metabolite which has been implicated in many diseases including cancer and inflammatory diseases. Recently, sphingosine kinase 1 (SK1), one of the isozymes which generates S1P, has been implicated in the development and progression of inflammatory bowel disease (IBD). Based on our previous work, we set out to determine the efficacy of a novel SK1 selective inhibitor, LCL351, in a murine model of IBD. LCL351 selectively inhibits SK1 both in vitro and in cells. LCL351, which accumulates in relevant tissues such as colon, did not have any adverse side effects in vivo. In mice challenged with dextran sodium sulfate (DSS), a murine model for IBD, LCL351 treatment protected from blood loss and splenomegaly. Additionally, LCL351 treatment reduced the expression of pro-inflammatory markers, and reduced neutrophil infiltration in colon tissue. Our results suggest inflammation associated with IBD can be targeted pharmacologically through the inhibition and degradation of SK1. Furthermore, our data also identifies desirable properties of SK1 inhibitors.
KW - Inflammation
KW - Inflammatory Bowel Disease
KW - Sphingolipids
KW - Sphingosine 1-Phosphate
KW - Sphingosine Kinase
UR - http://www.scopus.com/inward/record.url?scp=85017555842&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85017555842&partnerID=8YFLogxK
U2 - 10.1016/j.prostaglandins.2017.03.006
DO - 10.1016/j.prostaglandins.2017.03.006
M3 - Article
C2 - 28377281
AN - SCOPUS:85017555842
SN - 1098-8823
VL - 130
SP - 47
EP - 56
JO - Prostaglandins and Other Lipid Mediators
JF - Prostaglandins and Other Lipid Mediators
ER -