Novel Compounds Targeting Neuropilin Receptor 1 with Potential to Interfere with SARS-CoV-2 Virus Entry

Samantha Perez-Miller, Marcel Patek, Aubin Moutal, Paz Duran, Carly R. Cabel, Curtis A. Thorne, Samuel K. Campos, Rajesh Khanna

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

Neuropilin-1 (NRP-1) is a multifunctional transmembrane receptor for ligands that affect developmental axonal growth and angiogenesis. In addition to a role in cancer, NRP-1 is a reported entry point for several viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19). The furin cleavage product of SARS-CoV-2 Spike protein takes advantage of the vascular endothelial growth factor A (VEGF-A) binding site on NRP-1 which accommodates a polybasic stretch ending in a C-terminal arginine. This site has long been a focus of drug discovery efforts for cancer therapeutics. We recently showed that interruption of the VEGF-A/NRP-1 signaling pathway ameliorates neuropathic pain and hypothesize that interference of this pathway by SARS-CoV-2 Spike protein interferes with pain signaling. Here, we report confirmed hits from a small molecule and natural product screen of nearly 0.5 million compounds targeting the VEGF-A binding site on NRP-1. We identified nine chemical series with lead- or drug-like physicochemical properties. Using ELISA, we demonstrate that six compounds disrupt VEGF-A-NRP-1 binding more effectively than EG00229, a known NRP-1 inhibitor. Secondary validation in cells revealed that all tested compounds inhibited VEGF-A triggered VEGFR2 phosphorylation. Further, two compounds displayed robust inhibition of a recombinant vesicular stomatitis virus protein that utilizes the SARS-CoV-2 Spike for entry and fusion. These compounds represent a first step in a renewed effort to develop small molecule inhibitors of the VEGF-A/NRP-1 signaling for the treatment of neuropathic pain and cancer with the added potential of inhibiting SARS-CoV-2 virus entry.

Original languageEnglish (US)
Pages (from-to)1299-1312
Number of pages14
JournalACS Chemical Neuroscience
Volume12
Issue number8
DOIs
StatePublished - Apr 21 2021

Keywords

  • ELISA
  • Neuropilin-1
  • SARS-CoV-2
  • VEGF-A
  • VSV
  • cancer
  • natural compounds
  • pain
  • small molecules

ASJC Scopus subject areas

  • Biochemistry
  • Physiology
  • Cognitive Neuroscience
  • Cell Biology

Fingerprint

Dive into the research topics of 'Novel Compounds Targeting Neuropilin Receptor 1 with Potential to Interfere with SARS-CoV-2 Virus Entry'. Together they form a unique fingerprint.

Cite this