TY - GEN
T1 - Novel algorithms for optimal compression using classification metrics
AU - Xie, Bei
AU - Bose, Tamal
AU - Merényi, Erzsébet
PY - 2008
Y1 - 2008
N2 - In image processing, classification and compression are very common operations. Compression and classification algorithms are conventionally independent of each other and performed sequentially. However, some class distinctions may be lost after a minimum distortion compression. In this paper, two new schemes are developed that combine the compression and classification operations in order to optimize some classification metrics. In other words, the compression systems are improved under classification constraints. In the first scheme, compression is achieved by using Adaptive Differential Pulse Code Modulation (ADPCM). Optimization of filter coefficients is done by using a simple genetic algorithm (GA). In the second scheme, compression is achieved by image transform and quantization. The parameters in transform and quantization are adapted to improve the compression system and reduce the classification errors. Computer simulations are performed on hyperspectral images. The results are promising and illustrate the performance of the algorithms under various classification constraints and compression schemes.
AB - In image processing, classification and compression are very common operations. Compression and classification algorithms are conventionally independent of each other and performed sequentially. However, some class distinctions may be lost after a minimum distortion compression. In this paper, two new schemes are developed that combine the compression and classification operations in order to optimize some classification metrics. In other words, the compression systems are improved under classification constraints. In the first scheme, compression is achieved by using Adaptive Differential Pulse Code Modulation (ADPCM). Optimization of filter coefficients is done by using a simple genetic algorithm (GA). In the second scheme, compression is achieved by image transform and quantization. The parameters in transform and quantization are adapted to improve the compression system and reduce the classification errors. Computer simulations are performed on hyperspectral images. The results are promising and illustrate the performance of the algorithms under various classification constraints and compression schemes.
UR - http://www.scopus.com/inward/record.url?scp=49349111167&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=49349111167&partnerID=8YFLogxK
U2 - 10.1109/AERO.2008.4526393
DO - 10.1109/AERO.2008.4526393
M3 - Conference contribution
AN - SCOPUS:49349111167
SN - 1424414881
SN - 9781424414888
T3 - IEEE Aerospace Conference Proceedings
BT - 2008 IEEE Aerospace Conference, AC
T2 - 2008 IEEE Aerospace Conference, AC
Y2 - 1 March 2008 through 8 March 2008
ER -