Normal and inverted regimes of charge transfer controlled by density of states at polymer electrodes

M. Rudolph, E. L. Ratcliff

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

Conductive polymer electrodes have exceptional promise for next-generation bioelectronics and energy conversion devices due to inherent mechanical flexibility, printability, biocompatibility, and low cost. Conductive polymers uniquely exhibit hybrid electronic-ionic transport properties that enable novel electrochemical device architectures, an advantage over inorganic counterparts. Yet critical structure-property relationships to control the potential-dependent rates of charge transfer at polymer/electrolyte interfaces remain poorly understood. Herein, we evaluate the kinetics of charge transfer between electrodeposited poly-(3-hexylthiophene) films and a model redox-active molecule, ferrocenedimethanol. We show that the kinetics directly follow the potential-dependent occupancy of electronic states in the polymer. The rate increases then decreases with potential (both normal and inverted kinetic regimes), a phenomenon distinct from inorganic semiconductors. This insight can be invoked to design polymer electrodes with kinetic selectivity toward redox active species and help guide synthetic approaches for the design of alternative device architectures and approaches.

Original languageEnglish (US)
Article number1048
JournalNature communications
Volume8
Issue number1
DOIs
StatePublished - Dec 1 2017

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Normal and inverted regimes of charge transfer controlled by density of states at polymer electrodes'. Together they form a unique fingerprint.

Cite this