Abstract
Spinal dynorphin is hypothesized to contribute to the hyperalgesia that follows tissue and nerve injury or sustained morphine exposure. We considered that these dynorphin actions are mediated by a cascade involving the spinal release of excitatory amino acids and prostaglandins. Unanesthetized rats with lumbar intrathecal injection and loop dialysis probes received intrathecal NMDA, dynorphin A(1-17), or dynorphin A(2-17). These agents elicited an acute release of glutamate, aspartate, and taurine but not serine. The dynorphin peptides and NMDA also elicited a long-lasting spinal release of prostaglandin E2. Prostaglandin release evoked by dynorphin A( 2-17) or NMDA was blocked by the NMDA antagonist amino-5-phosphonovalerate as well the cyclooxygenase (COX) inhibitor ibuprofen. To identify the COX isozyme contributing to this release, SC 58236, a COX-2 inhibitor, was given and found to reduce prostaglandin E2 release evoked by either agent. Unexpectedly, the COX-1 inhibitor SC 58560 also reduced dynorphin A(2-17)-induced, but not NMDA-induced, release of prostaglandin E2. These findings reveal a novel mechanism by which elevated levels of spinal dynorphin seen in pathological conditions may produce hyperalgesia through the release of excitatory amino acids and in part by the activation of a constitutive spinal COX-1 and -2 cascade.
Original language | English (US) |
---|---|
Pages (from-to) | 1451-1458 |
Number of pages | 8 |
Journal | Journal of Neuroscience |
Volume | 24 |
Issue number | 6 |
DOIs | |
State | Published - Feb 11 2004 |
Keywords
- Aspartate
- Cyclooxygenase
- Dynorphin
- Glutamate
- NMDA
- Prostaglandin E
ASJC Scopus subject areas
- General Neuroscience