Abstract
Direct Numerical Simulations (DNS) are performed to investigate the nonlinear transition mechanisms of a boundary layer on a sharp cone at Mach 6. The flow parameters used in the simulations are based on the experimental conditions of the Boeing/AFOSR Mach 6 quiet-flow Ludwieg-tube at Purdue University. The main objective of the present research is to explore which nonlinear breakdown mechanisms may be dominant in a broad band "natural" disturbance environment and then to perform controlled transition simulations of these mechanisms. Towards this end, a "natural" transition scenario was modeled and investigated by generating wave packet disturbances. These wave packet simulations provided strong evidence for a possible presence of fundamental and subharmonic resonance mechanisms in the nonlinear transition regime. However, the fundamental resonance was much stronger than the subharmonic resonance. In addition to these two resonance mechanisms, the wave packet simulations also indicated the possible presence of oblique breakdown mechanism. To gain more insight into the nonlinear development we performed controlled transition simulations of these mechanisms. These simulations demonstrated that both fundamental breakdown and oblique breakdown may indeed be a viable path to complete breakdown to turbulence in hypersonic cone boundary layers at Mach 6.
Original language | English (US) |
---|---|
DOIs | |
State | Published - 2012 |
Event | 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition - Nashville, TN, United States Duration: Jan 9 2012 → Jan 12 2012 |
Other
Other | 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition |
---|---|
Country/Territory | United States |
City | Nashville, TN |
Period | 1/9/12 → 1/12/12 |
ASJC Scopus subject areas
- Aerospace Engineering