Nonlinear deformations of flapping wings on a micro air vehicle

Research output: Chapter in Book/Report/Conference proceedingConference contribution

20 Scopus citations

Abstract

Wing kinematics and wing flexibility are critical to MAV designs because they affect the wing planform, as well as the shape of the airfoil, such as camber and thickness. Therefore, the effect of structural deformations on the aerodynamic performance of a MAV is significant Such analysis is rather complex due to the many inherent complexities in the flow arising from a wide variety of flow conditions and the presence of moving and deforming boundaries arising from the flapping flexible/deformable wings. The wings are highly flexible and can undergo large deformations as a result of the aerodynamic loading. This deformation can, in turn, have a significant effect on the flow, which can then alter the loading itself. In this study, the presence of aerodynamic loads is not included in order to simplify the analysis so that only the effect of prescribed dynamic motion and wing flexibility on the wing deformations can be investigated. Unlike previous studies, the present study includes the effect of externally applied dynamic loads and time-dependent angular velocity and the influence of the coupling among the rigid-body motion, large elastic deformations, and inertial forces on the motion and deformation of the wing. In particular, this study simulates the motion of a dragonfly, which is representative of MAVs.

Original languageEnglish (US)
Title of host publicationCollection of Technical Papers - 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
Subtitle of host publication14th AIAA/ASME/AHS Adaptive Structures Conference, 8th AIAA Non-deterministic App
Pages782-806
Number of pages25
StatePublished - 2006
Event47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference - Newport, RI, United States
Duration: May 1 2006May 4 2006

Publication series

NameCollection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
Volume2
ISSN (Print)0273-4508

Other

Other47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
Country/TerritoryUnited States
CityNewport, RI
Period5/1/065/4/06

ASJC Scopus subject areas

  • Architecture
  • General Materials Science
  • Aerospace Engineering
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Nonlinear deformations of flapping wings on a micro air vehicle'. Together they form a unique fingerprint.

Cite this