Non-local thermodynamic equilibrium transmission spectrum modelling of HD 209458b

M. E. Young, L. Fossati, T. T. Koskinen, M. Salz, P. E. Cubillos, K. France

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Context. Exoplanetary upper atmospheres are low density environments where radiative processes can compete with collisional ones and introduce non-local thermodynamic equilibrium (NLTE) effects into transmission spectra. Aims. We develop a NLTE radiative transfer framework capable of modelling exoplanetary transmission spectra over a wide range of planetary properties. Methods. We adapted the NLTE spectral synthesis code Cloudy to produce an atmospheric structure and atomic transmission spectrum in both NLTE and local thermodynamic equilibrium (LTE) for the hot Jupiter HD 209458b, given a published T-P profile and assuming solar metallicity. Selected spectral features, including Hα, NaI D, HeI λ10 830, FeI anda II ultra-violet (UV) bands, and C, O, and Si UV lines, are compared with literature observations and models where available. The strength of NLTE effects are measured for individual spectral lines to identify which features are most strongly affected. Results. The developed modelling framework that computes NLTE synthetic spectra reproduces literature results for the HeI λ10 830 triplet, the NaI D lines, and the forest of FeI lines in the optical. Individual spectral lines in the NLTE spectrum exhibit up to 40% stronger absorption relative to the LTE spectrum.

Original languageEnglish (US)
Article numberA47
JournalAstronomy and astrophysics
Volume641
DOIs
StatePublished - Sep 1 2020

Keywords

  • Planets and satellites: atmospheres
  • Planets and satellites: general
  • Planets and satellites: individual: HD 209458b
  • Radiative transfer
  • Techniques: spectroscopic

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Non-local thermodynamic equilibrium transmission spectrum modelling of HD 209458b'. Together they form a unique fingerprint.

Cite this