TY - JOUR
T1 - Non-local thermodynamic equilibrium transmission spectrum modelling of HD 209458b
AU - Young, M. E.
AU - Fossati, L.
AU - Koskinen, T. T.
AU - Salz, M.
AU - Cubillos, P. E.
AU - France, K.
N1 - Publisher Copyright:
© ESO 2020.
PY - 2020/9/1
Y1 - 2020/9/1
N2 - Context. Exoplanetary upper atmospheres are low density environments where radiative processes can compete with collisional ones and introduce non-local thermodynamic equilibrium (NLTE) effects into transmission spectra. Aims. We develop a NLTE radiative transfer framework capable of modelling exoplanetary transmission spectra over a wide range of planetary properties. Methods. We adapted the NLTE spectral synthesis code Cloudy to produce an atmospheric structure and atomic transmission spectrum in both NLTE and local thermodynamic equilibrium (LTE) for the hot Jupiter HD 209458b, given a published T-P profile and assuming solar metallicity. Selected spectral features, including Hα, NaI D, HeI λ10 830, FeI anda II ultra-violet (UV) bands, and C, O, and Si UV lines, are compared with literature observations and models where available. The strength of NLTE effects are measured for individual spectral lines to identify which features are most strongly affected. Results. The developed modelling framework that computes NLTE synthetic spectra reproduces literature results for the HeI λ10 830 triplet, the NaI D lines, and the forest of FeI lines in the optical. Individual spectral lines in the NLTE spectrum exhibit up to 40% stronger absorption relative to the LTE spectrum.
AB - Context. Exoplanetary upper atmospheres are low density environments where radiative processes can compete with collisional ones and introduce non-local thermodynamic equilibrium (NLTE) effects into transmission spectra. Aims. We develop a NLTE radiative transfer framework capable of modelling exoplanetary transmission spectra over a wide range of planetary properties. Methods. We adapted the NLTE spectral synthesis code Cloudy to produce an atmospheric structure and atomic transmission spectrum in both NLTE and local thermodynamic equilibrium (LTE) for the hot Jupiter HD 209458b, given a published T-P profile and assuming solar metallicity. Selected spectral features, including Hα, NaI D, HeI λ10 830, FeI anda II ultra-violet (UV) bands, and C, O, and Si UV lines, are compared with literature observations and models where available. The strength of NLTE effects are measured for individual spectral lines to identify which features are most strongly affected. Results. The developed modelling framework that computes NLTE synthetic spectra reproduces literature results for the HeI λ10 830 triplet, the NaI D lines, and the forest of FeI lines in the optical. Individual spectral lines in the NLTE spectrum exhibit up to 40% stronger absorption relative to the LTE spectrum.
KW - Planets and satellites: atmospheres
KW - Planets and satellites: general
KW - Planets and satellites: individual: HD 209458b
KW - Radiative transfer
KW - Techniques: spectroscopic
UR - http://www.scopus.com/inward/record.url?scp=85092100503&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85092100503&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/202037672
DO - 10.1051/0004-6361/202037672
M3 - Article
AN - SCOPUS:85092100503
SN - 0004-6361
VL - 641
JO - Astronomy and astrophysics
JF - Astronomy and astrophysics
M1 - A47
ER -