NMF-based GPU accelerated coronagraphy pipeline

Sai P.M. Krishanth, Ewan S. Douglas, Justin Hom, Ramya M. Anche, John Debes, Isabel Rebollido, Bin B. Ren

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

We present a generalized Non-negative factorization (NMF)-based data reduction pipeline for circumstellar disk and exoplanet detection. By using an adaptable pre-processing routine that applies algorithmic masks and corrections to improper data, we are able to easily offload the computationally-intensive NMF algorithm to a graphics processing unit (GPU), significantly increasing computational efficiency. NMF has been shown to better preserve disk structural features compared to other post-processing approaches and has demonstrated improvements in the analysis of archival data. The adaptive pre-processing routine of this pipeline, which automatically aligns and applies image corrections to the raw data, is shown to significantly improve chromatic halo suppression. Utilizing HST-STIS and JWST-MIRI coronagraphic datasets, we demonstrate a factor of five increase in real-time computational efficiency by using GPUs to perform NMF compared to using CPUs. Additionally, we demonstrate the usefulness of higher numbers of NMF components with SNR and contrast improvements, which necessitates the use of a more computationally efficient approach for data reduction.

Original languageEnglish (US)
Title of host publicationTechniques and Instrumentation for Detection of Exoplanets XI
EditorsGarreth J. Ruane
PublisherSPIE
ISBN (Electronic)9781510665743
DOIs
StatePublished - 2023
EventTechniques and Instrumentation for Detection of Exoplanets XI 2023 - San Diego, United States
Duration: Aug 21 2023Aug 24 2023

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12680
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceTechniques and Instrumentation for Detection of Exoplanets XI 2023
Country/TerritoryUnited States
CitySan Diego
Period8/21/238/24/23

Keywords

  • Debris Disks
  • GPU accelerated computing
  • High Contrast Imaging

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'NMF-based GPU accelerated coronagraphy pipeline'. Together they form a unique fingerprint.

Cite this