Net dextral slip, Neogene San Gregorio-Hosgri fault zone, coastal California: Geologic evidence and tectonic implications

William R. Dickinson, Mihai Ducea, Lewis I. Rosenberg, H. Gary Greene, Stephan A. Graham, Joseph C. Clark, Gerald E. Weber, Steven Kidder, Earl E. Brabb, W. Gary Ernst

Research output: Contribution to journalArticlepeer-review

28 Scopus citations


Reinterpretation of onshore and offshore geologic mapping, examination of a key offshore well core, and revision of cross-fault ties indicate Neogene dextral strike slip of 156 ± 4 km along the San Gregorio-Hosgri fault zone, a major strand of the San Andreas transform system in coastal California. Delineating the full course of the fault, defining net slip across it, and showing its relationship to other major tectonic features of central California helps clarify the evolution of the San Andreas system. San Gregorio-Hosgri slip rates over time are not well constrained, but were greater than at present during early phases of strike slip following fault initiation in late Miocene time. Strike slip took place southward along the California coast from the western flank of the San Francisco Peninsula to the Hosgri fault in the offshore Santa Maria basin without significant reduction by transfer of strike slip into the central California Coast Ranges. Onshore coastal segments of the San Gregorio-Hosgri fault include the Seal Cove and San Gregorio faults on the San Francisco Peninsula, and the Sur and San Simeon fault zones along the flank of the Santa Lucia Range. Key cross-fault ties include porphyritic granodiorite and overlying Eocene strata exposed at Point Reyes and at Point Lobos, the Nacimiento fault contact between Salin- ian basement rocks and the Franciscan Complex offshore within the outer Santa Cruz basin and near Esalen on the flank of the Santa Lucia Range, Upper Cretaceous (Cam- panian) turbidites of the Pigeon Point Formation on the San Francisco Peninsula and the Atascadero Formation in the southern Santa Lucia Range, assemblages of Franciscan rocks exposed at Point Sur and at Point San Luis, and a lithic assemblage of Meso- zoic rocks and their Tertiary cover exposed near Point San Simeon and at Point Sal, as restored for intrabasinal deformation within the onshore Santa Maria basin. Slivering of the Salinian block by San Gregorio-Hosgri displacements elongated its northern end and offset its western margin delineated by the older Nacimiento fault, a sinistral strike-slip fault of latest Cretaceous to Paleocene age. North of its juncture with the San Andreas fault, dextral slip along the San Gregorio-Hosgri fault augments net San Andreas displacement. Alternate restorations of the Gualala block imply that nearly half the net San Gregorio-Hosgri slip was accommodated along the offshore Gualala fault strand lying west of the Gualala block, which is bounded on the east by the current master trace of the San Andreas fault. With San Andreas and San Gregorio-Hosgri slip restored, there remains an unresolved proto-San Andreas mismatch of ~100 km between the offset northern end of the Salinian block and the southern end of the Sierran-Tehachapi block. On the south, San Gregorio-Hosgri strike slip is transposed into crustal shortening associated with vertical-axis tectonic rotation of fault-bounded crustal panels that form the western Transverse Ranges, and with kinematically linked deformation within the adjacent Santa Maria basin. The San Gregorio-Hosgri fault serves as the principal link between transrotation in the western Transverse Ranges and strike slip within the San Andreas transform system of central California.

Original languageEnglish (US)
Pages (from-to)1-43
Number of pages43
JournalSpecial Paper of the Geological Society of America
StatePublished - 2005


  • California
  • Hosgri fault
  • Nacimiento fault
  • Salinian block
  • San Andreas fault
  • San Gregorio fault

ASJC Scopus subject areas

  • Geology


Dive into the research topics of 'Net dextral slip, Neogene San Gregorio-Hosgri fault zone, coastal California: Geologic evidence and tectonic implications'. Together they form a unique fingerprint.

Cite this