TY - JOUR
T1 - Myosin Light Chain Kinase in Endothelium
T2 - Molecular Cloning and Regulation
AU - Garcia, Joe G.N.
AU - Lazar, Virginie
AU - Gilbert-McClain, Lydia I.
AU - Gallagher, Patricia J.
AU - Verin, Alexander D.
PY - 1997
Y1 - 1997
N2 - The phosphorylation of myosin light chains by myosin light chain kinase (MLCK) is a key event in agonist-mediated endothelial cell gap formation and vascular permeability. We now report the cloning and expression of a nonmuscle MLCK isoform in cultured endothelium. Screening of a human endothelial cell cDNA library identified a 7.7 kb cDNA with substantial (> 95%) homology to the coding region of the rabbit and bovine smooth muscle (SM) MLCK (amino acid #923-1913) as well as with the reported avian nonmuscle MLCK (65-70% homology). Sequence analysis also identified, however, a 5′ stretch of novel sequence (amino acids #1-922) which is not contained in the open reading frame of mammalian SM MLCK, and is only 58% homologous to the avian fibroblast MLCK sequence. Immunoprecipitation with NH2-specific antisera revealed a 214 kD high molecular weight MLCK in bovine and human endothelium which exhibits MLC phosphorylation properties. Amino acid sequence analysis revealed endothelial MLCK consensus sequences for a variety of protein kinases including highly conserved potential phosphorylation sites for cAMP-dependent protein kinase A (PKA) in the CaM-binding region. Augmentation of intracellular cAMP levels markedly enhanced MLCK phosphorylation (2.5-fold increase) and reduced kinase activity in MLCK immunoprecipitates (4-fold decrease). These data suggest potentially novel mechanisms of endothelial cell contraction and barrier regulation.
AB - The phosphorylation of myosin light chains by myosin light chain kinase (MLCK) is a key event in agonist-mediated endothelial cell gap formation and vascular permeability. We now report the cloning and expression of a nonmuscle MLCK isoform in cultured endothelium. Screening of a human endothelial cell cDNA library identified a 7.7 kb cDNA with substantial (> 95%) homology to the coding region of the rabbit and bovine smooth muscle (SM) MLCK (amino acid #923-1913) as well as with the reported avian nonmuscle MLCK (65-70% homology). Sequence analysis also identified, however, a 5′ stretch of novel sequence (amino acids #1-922) which is not contained in the open reading frame of mammalian SM MLCK, and is only 58% homologous to the avian fibroblast MLCK sequence. Immunoprecipitation with NH2-specific antisera revealed a 214 kD high molecular weight MLCK in bovine and human endothelium which exhibits MLC phosphorylation properties. Amino acid sequence analysis revealed endothelial MLCK consensus sequences for a variety of protein kinases including highly conserved potential phosphorylation sites for cAMP-dependent protein kinase A (PKA) in the CaM-binding region. Augmentation of intracellular cAMP levels markedly enhanced MLCK phosphorylation (2.5-fold increase) and reduced kinase activity in MLCK immunoprecipitates (4-fold decrease). These data suggest potentially novel mechanisms of endothelial cell contraction and barrier regulation.
UR - http://www.scopus.com/inward/record.url?scp=0031135205&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031135205&partnerID=8YFLogxK
U2 - 10.1165/ajrcmb.16.5.9160829
DO - 10.1165/ajrcmb.16.5.9160829
M3 - Article
C2 - 9160829
AN - SCOPUS:0031135205
SN - 1044-1549
VL - 16
SP - 489
EP - 494
JO - American Journal of Respiratory Cell and Molecular Biology
JF - American Journal of Respiratory Cell and Molecular Biology
IS - 5
ER -