MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis

Atsushi Terunuma, Nagireddy Putluri, Prachi Mishra, Ewy A. Mathé, Tiffany H. Dorsey, Ming Yi, Tiffany A. Wallace, Haleem J. Issaq, Ming Zhou, J. Keith Killian, Holly S. Stevenson, Edward D. Karoly, King Chan, Susmita Samanta, Darue Prieto, Tiffany Y.T. Hsu, Sarah J. Kurley, Vasanta Putluri, Rajni Sonavane, Daniel C. EdelmanJacob Wulff, Adrienne M. Starks, Yinmeng Yang, Rick A. Kittles, Harry G. Yfantis, Dong H. Lee, Olga B. Ioffe, Rachel Schiff, Robert M. Stephens, Paul S. Meltzer, Timothy D. Veenstra, Thomas F. Westbrook, Arun Sreekumar, Stefan Ambs

Research output: Contribution to journalArticlepeer-review

307 Scopus citations


Metabolic profiling of cancer cells has recently been established as a promising tool for the development of therapies and identification of cancer biomarkers. Here we characterized the metabolomic profile of human breast tumors and uncovered intrinsic metabolite signatures in these tumors using an untargeted discovery approach and validation of key metabolites. The oncometabolite 2-hydroxyglutarate (2HG) accumulated at high levels in a subset of tumors and human breast cancer cell lines. We discovered an association between increased 2HG levels and MYC pathway activation in breast cancer, and further corroborated this relationship using MYC overexpression and knockdown in human mammary epithelial and breast cancer cells. Further analyses revealed globally increased DNA methylation in 2HG-high tumors and identified a tumor subtype with high tissue 2HG and a distinct DNA methylation pattern that was associated with poor prognosis and occurred with higher frequency in African-American patients. Tumors of this subtype had a stem cell-like transcriptional signature and tended to overexpress glutaminase, suggestive of a functional relationship between glutamine and 2HG metabolism in breast cancer. Accordingly, 13C-labeled glutamine was incorporated into 2HG in cells with aberrant 2HG accumulation, whereas pharmacologic and siRNAmediated glutaminase inhibition reduced 2HG levels. Our findings implicate 2HG as a candidate breast cancer oncometabolite associated with MYC activation and poor prognosis.

Original languageEnglish (US)
Pages (from-to)398-412
Number of pages15
JournalJournal of Clinical Investigation
Issue number1
StatePublished - Jan 2 2014

ASJC Scopus subject areas

  • General Medicine


Dive into the research topics of 'MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis'. Together they form a unique fingerprint.

Cite this