Muon-Catalyzed Fusion

Johann Rafelski, Helga E. Rafelski

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


This chapter discusses muon-catalyzed fusion. The natural existence of a heavy electron, the muon bridges the enormous energy gap between the atomic and nuclear domains and facilitates spontaneous nuclear-fusion reactions of hydrogen isotopes. Because of this interconnection of atomic, molecular, and nuclear phenomena, the chain of atomic and molecular processes into which a single muon engages in a target consisting of a mixture of hydrogen isotopes, is very complex. The cycle of reactions in which a single muon repeatedly initiates nuclear fusions during its lifetime is termed as “muon-catalyzed fusion” or MuCF. At the origin of the diverse effects is the muonic hydrogen atom, a small neutral object capable of entering into chains of complex resonant reactions at thermal energies. The entire wealth of neutron-like physics repeats itself with the added complication that the neutral object is now polarizable. The chapter explains the nuclear fusion, dt muon catalytic cycle and reaction rates, and muon sticking. In MuCF exothermic fusion reactions can occur between several combinations of hydrogen isotopes. The dt catalytic cycle can be repeated hundred times during the lifetime of one muon. The probability of the initial sticking is the reaction-branching ratio, which is small but significant in MuCF applications.

Original languageEnglish (US)
Pages (from-to)177-215
Number of pages39
JournalAdvances in Atomic, Molecular and Optical Physics
Issue numberC
StatePublished - Jan 1 1991

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Electronic, Optical and Magnetic Materials


Dive into the research topics of 'Muon-Catalyzed Fusion'. Together they form a unique fingerprint.

Cite this