Abstract
In many real-world applications, multiple agents seek to learn how to perform highly related yet slightly different tasks in an online bandit learning protocol. We formulate this problem as the ∊-multi-player multi-armed bandit problem, in which a set of players concurrently interact with a set of arms, and for each arm, the reward distributions for all players are similar but not necessarily identical. We develop an upper confidence bound-based algorithm, RobustAgg(∊), that adaptively aggregates rewards collected by different players. In the setting where an upper bound on the pairwise dissimilarities of reward distributions between players is known, we achieve instance-dependent regret guarantees that depend on the amenability of information sharing across players. We complement these upper bounds with nearly matching lower bounds. In the setting where pairwise dissimilarities are unknown, we provide a lower bound, as well as an algorithm that trades off minimax regret guarantees for adaptivity to unknown similarity structure.
Original language | English (US) |
---|---|
Pages (from-to) | 1531-1539 |
Number of pages | 9 |
Journal | Proceedings of Machine Learning Research |
Volume | 130 |
State | Published - 2021 |
Event | 24th International Conference on Artificial Intelligence and Statistics, AISTATS 2021 - Virtual, Online, United States Duration: Apr 13 2021 → Apr 15 2021 |
ASJC Scopus subject areas
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability