Abstract
Anecdotal evidence suggests that the timing and intensity of the Central American Midsummer Drought (MSD) may be changing, while observations from limited meteorological station data and paleoclimate reconstructions show neither significant nor consistent trends in seasonal rainfall. Climate model simulations project robust future drying across the region, but internal variability is expected to dominate until the end of the century. Here we use a high-resolution gridded precipitation dataset to investigate these apparent discrepancies and to quantify the spatiotemporal complexities of the MSD. We detect spatially variable trends in MSD timing, the amount of rainy season precipitation, the number of consecutive and total dry days, and extreme wet events at the local scale. At the regional scale, we find a positive trend in the duration, but not the magnitude of the MSD, which is dominated by spatially heterogeneous trends and interannual variability linked to large-scale modes of ocean-atmosphere circulation. Although the current climate still reflects predominantly internal variability, some Central American communities are already experiencing significant changes in local characteristics of the MSD. A detailed spatiotemporal understanding of MSD trends and variability can contribute to evidence-based adaptation planning and help reduce the vulnerability of Central American communities to both natural rainfall variability and anthropogenic change.
Original language | English (US) |
---|---|
Article number | 124016 |
Journal | Environmental Research Letters |
Volume | 14 |
Issue number | 12 |
DOIs | |
State | Published - Nov 27 2019 |
Keywords
- Caribbean Low Level Jet
- Central America
- Midsummer Drought
- North Atlantic Subtropical High
- agriculture
- trends
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- General Environmental Science
- Public Health, Environmental and Occupational Health