TY - JOUR
T1 - Multiple transforming growth factor-β isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart
AU - Mercado-Pimentel, Melania E.
AU - Runyan, Raymond B.
PY - 2007/6
Y1 - 2007/6
N2 - Epithelial-mesenchymal cell transformation (EMT) is a critical process during development of the heart valves. Transition of endothelial cells into mesenchymal cells in the atrioventricular (AV) canal and the outflow tract regions of the heart form the cardiac cushions that eventually form the heart valves. Collagen gel invasion assay has aided in the identification of molecules that regulate EMT. Among those, transforming growth factor-β (TGF-β) ligands and receptors demonstrate a critical role during EMT. In the chick, TGF-β ligands and some receptors have specific functions during EMT. TGF-β2 mediates endothelial cell-cell activation and separation, and TGF-β3 mediates cell invasion into the extracellular matrix. Receptors involved in the EMT process include TGF-β receptor type II (TBRII), TBRIII, endoglin and the TBRI receptors, ALK2 and ALK5. In contrast, in the mouse model, TGF-β2 is the only ligand involved in EMT. The TGF-β2 null mouse has either increased EMT or a mesenchymal cell proliferation after EMT. However, functional studies of TGF-β1 in vivo and in vitro showed that TGF-β1 functions in the EMT of the mouse AV canal. Latent TGF-β-binding protein (LTBP-1) and endoglin have a role in the EMT process. Therefore, TGF-βs mediate cardiac EMT in both embryonic species. Further studies will reveal the identification of ligand and receptor-specific activities.
AB - Epithelial-mesenchymal cell transformation (EMT) is a critical process during development of the heart valves. Transition of endothelial cells into mesenchymal cells in the atrioventricular (AV) canal and the outflow tract regions of the heart form the cardiac cushions that eventually form the heart valves. Collagen gel invasion assay has aided in the identification of molecules that regulate EMT. Among those, transforming growth factor-β (TGF-β) ligands and receptors demonstrate a critical role during EMT. In the chick, TGF-β ligands and some receptors have specific functions during EMT. TGF-β2 mediates endothelial cell-cell activation and separation, and TGF-β3 mediates cell invasion into the extracellular matrix. Receptors involved in the EMT process include TGF-β receptor type II (TBRII), TBRIII, endoglin and the TBRI receptors, ALK2 and ALK5. In contrast, in the mouse model, TGF-β2 is the only ligand involved in EMT. The TGF-β2 null mouse has either increased EMT or a mesenchymal cell proliferation after EMT. However, functional studies of TGF-β1 in vivo and in vitro showed that TGF-β1 functions in the EMT of the mouse AV canal. Latent TGF-β-binding protein (LTBP-1) and endoglin have a role in the EMT process. Therefore, TGF-βs mediate cardiac EMT in both embryonic species. Further studies will reveal the identification of ligand and receptor-specific activities.
KW - ALK2
KW - ALK5
KW - Endoglin
KW - Transforming growth factor-β2
KW - Transforming growth factor-β3
UR - http://www.scopus.com/inward/record.url?scp=34250695906&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34250695906&partnerID=8YFLogxK
U2 - 10.1159/000101315
DO - 10.1159/000101315
M3 - Article
C2 - 17587820
AN - SCOPUS:34250695906
VL - 185
SP - 146
EP - 156
JO - Cells Tissues Organs
JF - Cells Tissues Organs
SN - 1422-6405
IS - 1-3
ER -