Multiple chemical tracers finally unveil the intricate NGC 1333 IRAS 4A outflow system. FAUST XVI

Layal Chahine, Cecilia Ceccarelli, Marta De Simone, Claire J. Chandler, Claudio Codella, Linda Podio, Ana López-Sepulcre, Nami Sakai, Laurent Loinard, Mathilde Bouvier, Paola Caselli, Charlotte Vastel, Eleonora Bianchi, Nicolás Cuello, Francesco Fontani, Doug Johnstone, Giovanni Sabatini, Tomoyuki Hanawa, Ziwei E. Zhang, Yuri AikawaGemma Busquet, Emmanuel Caux, Aurore Durán, Eric Herbst, François Menard, Dominique Segura-Cox, Brian Svoboda, Nadia Balucani, Steven Charnley, François Dulieu, Lucy Evans, Davide Fedele, Siyi Feng, Tetsuya Hama, Tomoya Hirota, Andrea Isella, Izaskun Jímenez-Serra, Bertrand Lefloch, Luke T. Maud, María Jose Maureira, Anna Miotello, George Moellenbrock, Hideko Nomura, Yasuhiro Oba, Satoshi Ohashi, Yuki Okoda, Yoko Oya, Jaime Pineda, Albert Rimola, Takeshi Sakai, Yancy Shirley, Leonardo Testi, Serena Viti, Naoki Watanabe, Yoshimasa Watanabe, Yichen Zhang, Satoshi Yamamoto

Research output: Contribution to journalArticlepeer-review

Abstract

The exploration of outflows in protobinary systems presents a challenging yet crucial endeavour, offering valuable insights into the dynamic interplay between protostars and their evolution. In this study, we examine the morphology and dynamics of jets and outflows within the IRAS 4A protobinary system. This analysis is based on ALMA observations of SiO(5-4), H2CO(30, 3-20, 3), and HDCO(41, 4-31, 3) with a spatial resolution of ∼150 au. Leveraging an astrochemical approach involving the use of diverse tracers beyond traditional ones has enabled the identification of novel features and a comprehensive understanding of the broader outflow dynamics. Our analysis reveals the presence of two jets in the redshifted emission, emanating from IRAS 4A1 and IRAS 4A2, respectively. Furthermore, we identify four distinct outflows in the region for the first time, with each protostar, 4A1 and 4A2, contributing to two of them. We characterize the morphology and orientation of each outflow, challenging previous suggestions of bends in their trajectories. The outflow cavities of IRAS 4A1 exhibit extensions of 10 and 13 arcsec with position angles (PA) of 0° and -12°, respectively, while those of IRAS 4A2 are more extended, spanning 18 and 25 arcsec with PAs of 29° and 26°. We propose that the misalignment of the cavities is due to a jet precession in each protostar, a notion supported by the observation that the more extended cavities of the same source exhibit lower velocities, indicating they may stem from older ejection events.

Original languageEnglish (US)
Pages (from-to)2653-2668
Number of pages16
JournalMonthly Notices of the Royal Astronomical Society
Volume531
Issue number2
DOIs
StatePublished - Jun 1 2024

Keywords

  • ISM: individual objects: NGC 1333 IRAS 4A
  • ISM: jets and outflows
  • ISM: kinematics and dynamics
  • astrochemistry
  • stars: formation
  • stars: low-mass

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Multiple chemical tracers finally unveil the intricate NGC 1333 IRAS 4A outflow system. FAUST XVI'. Together they form a unique fingerprint.

Cite this