TY - JOUR
T1 - Multiple Bonds between Main-Group Elements and Transition Metals. 86.1 Methyltrioxorhenium(VII) and Trioxo(η5-pentamethylcyclopentadienyl)rhenium(VII)
T2 - Structures, Spectroscopy, and Electrochemistry
AU - Herrmann, Wolfgang A.
AU - Kiprof, Paul
AU - Rypdal, Kristin
AU - Tremmel, Janos
AU - Blom, Richard
AU - Alberto, Roger
AU - Behm, Joachim
AU - Albach, Rolf W.
AU - Bock, Hans
AU - Solouki, Bahmann
AU - Mink, Janos
AU - Lichtenberger, Dennis
AU - Gruhn, Nadine E.
PY - 1991/8/1
Y1 - 1991/8/1
N2 - Two key compounds of organometal oxides, methyltrioxorhenium(VII) (1) and trioxo(η 5-pentamethylcyclopentadienyl)rhenium(VII) (2), have been structurally characterized by means of electron diffraction techniques, showing that the ReO3 fragments of these compounds have trigonal-pyramidal structures in the gas phase. The rhenium-carbon distance of the 14e complex 1 amounts to 206.0 (9) pm, which is the shortest Re-C(sp3) bond so far recorded. The pentamethyl-cyclopentadienyl derivative 2 has the longest known rhenium-carbon bond (240.5 (6) pm) due to the size of this particular ir-bonded ligand and the σ/π-donor properties of the oxo ligands (“trans influence”). Infrared and Raman spectra show a much higher triple-bond contribution in the rhenium-oxygen bonds of 1 (force constant k = 8.16 mdyn/Å) compared with 2 (k = 6.99 mdyn/Å). The π-donor qualities of the ring ligand of 2 are considered the major effect to reduce the rhenium-oxygen bond order of this 18e compound since the σ-aryl complex (σ-C6H2Me3)ReO3 (3) has a force constant of k = 8.08 mdyn/Å. According to cyclovoltammetric data, the methyl derivative 1 is more easily reduced (Epc = −0.84 V vs Ag/AgCl, THF, 20 °C) than the half-sandwich congener 2 (Epc = −1.72 V), again reflecting the electronic situation of the two compounds (14e vs 18e, respectively). The first vertical PE ionization energies of 1 and 2, 11.8 and 8.6 eV, differ by 3.2 eV due to their different radical-cation ground states, X(a2n) and X(e,πCp*). The equivalent oxygen lone pair type ionization of 2, IE2v(a2,n0) = 9.9 eV, is lower by 1.9 eV and gives proof of the electron donation from the η5-bonded π-ligand C5Me5. In addition, the PE spectrum of trioxo(η1-mesityl)rhenium(VII) (3) has been recorded: Its first ionization energy of 9.00 eV exceeds the corresponding one of mesitylene by 0.6 eV, thus demonstrating the considerable acceptor effect of the ReO3 substituent group toward an η1-bonded π ligand. The high electric dipole moment of 2 (µ = 6.2 D; benzene, 25 °C) appears reasonable in light of the high polarizability of the C5Me5-Re bond (approximately 4 D); the ReO3 unit has a dipole increment of ca. 2.2 D in 1 and 2. NMR and PE spectra clearly show that the ReO3 functionality is a strong electron-withdrawing substituent, stereoelectronically comparable with the SO3H substituent in organic compounds.
AB - Two key compounds of organometal oxides, methyltrioxorhenium(VII) (1) and trioxo(η 5-pentamethylcyclopentadienyl)rhenium(VII) (2), have been structurally characterized by means of electron diffraction techniques, showing that the ReO3 fragments of these compounds have trigonal-pyramidal structures in the gas phase. The rhenium-carbon distance of the 14e complex 1 amounts to 206.0 (9) pm, which is the shortest Re-C(sp3) bond so far recorded. The pentamethyl-cyclopentadienyl derivative 2 has the longest known rhenium-carbon bond (240.5 (6) pm) due to the size of this particular ir-bonded ligand and the σ/π-donor properties of the oxo ligands (“trans influence”). Infrared and Raman spectra show a much higher triple-bond contribution in the rhenium-oxygen bonds of 1 (force constant k = 8.16 mdyn/Å) compared with 2 (k = 6.99 mdyn/Å). The π-donor qualities of the ring ligand of 2 are considered the major effect to reduce the rhenium-oxygen bond order of this 18e compound since the σ-aryl complex (σ-C6H2Me3)ReO3 (3) has a force constant of k = 8.08 mdyn/Å. According to cyclovoltammetric data, the methyl derivative 1 is more easily reduced (Epc = −0.84 V vs Ag/AgCl, THF, 20 °C) than the half-sandwich congener 2 (Epc = −1.72 V), again reflecting the electronic situation of the two compounds (14e vs 18e, respectively). The first vertical PE ionization energies of 1 and 2, 11.8 and 8.6 eV, differ by 3.2 eV due to their different radical-cation ground states, X(a2n) and X(e,πCp*). The equivalent oxygen lone pair type ionization of 2, IE2v(a2,n0) = 9.9 eV, is lower by 1.9 eV and gives proof of the electron donation from the η5-bonded π-ligand C5Me5. In addition, the PE spectrum of trioxo(η1-mesityl)rhenium(VII) (3) has been recorded: Its first ionization energy of 9.00 eV exceeds the corresponding one of mesitylene by 0.6 eV, thus demonstrating the considerable acceptor effect of the ReO3 substituent group toward an η1-bonded π ligand. The high electric dipole moment of 2 (µ = 6.2 D; benzene, 25 °C) appears reasonable in light of the high polarizability of the C5Me5-Re bond (approximately 4 D); the ReO3 unit has a dipole increment of ca. 2.2 D in 1 and 2. NMR and PE spectra clearly show that the ReO3 functionality is a strong electron-withdrawing substituent, stereoelectronically comparable with the SO3H substituent in organic compounds.
UR - http://www.scopus.com/inward/record.url?scp=12044258652&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=12044258652&partnerID=8YFLogxK
U2 - 10.1021/ja00017a025
DO - 10.1021/ja00017a025
M3 - Article
AN - SCOPUS:12044258652
SN - 0002-7863
VL - 113
SP - 6527
EP - 6537
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 17
ER -