Multiple biomarkers for risk prediction in chronic heart failure

Bonnie Ky, Benjamin French, Wayne C. Levy, Nancy K. Sweitzer, James C. Fang, Alan H.B. Wu, Lee R. Goldberg, Mariell Jessup, Thomas P. Cappola

Research output: Contribution to journalArticlepeer-review

161 Scopus citations


Background-Prior studies have suggested using a panel of biomarkers that measure diverse biological processes as a prognostic tool in chronic heart failure. Whether this approach improves risk prediction beyond clinical evaluation is unknown. Methods and Results-In a multicenter cohort of 1513 chronic systolic heart failure patients, we measured a contemporary biomarker panel consisting of high-sensitivity C-reactive protein, myeloperoxidase, B-type natriuretic peptide, soluble fms-like tyrosine kinase receptor-1, troponin I, soluble toll-like receptor-2, creatinine, and uric acid. From this panel, we calculated a parsimonious multimarker score and assessed its performance in predicting risk of death, cardiac transplantation, or ventricular assist device placement in comparison to an established clinical risk score, the Seattle Heart Failure Model (SHFM). During a median follow-up of 2.5 years, there were 317 outcomes: 187 patients died; 99 were transplanted; and 31 had a ventricular assist device placed. In unadjusted Cox models, patients in the highest tertile of the multimarker score had a 13.7-fold increased risk of adverse outcomes compared with the lowest tertile (95% confidence interval, 8.75-21.5). These effects were independent of the SHFM (adjusted hazard ratio, 6.80; 95% confidence interval, 4.18 -11.1). Addition of the multimarker score to the SHFM led to a significantly improved area under the receiver operating characteristic curve of 0.803 versus 0.756 (P<0.003) and appropriately reclassified a significant number of patients who had the outcome into a higher risk category (net reclassification improvement, 25.2%; 95% confidence interval, 14.2-36.2%; P<0.001). Conclusions-In ambulatory chronic heart failure patients, a score derived from multiple biomarkers integrating diverse biological pathways substantially improves prediction of adverse events beyond current metrics.

Original languageEnglish (US)
Pages (from-to)183-190
Number of pages8
JournalCirculation: Heart Failure
Issue number2
StatePublished - Mar 2012


  • Biomarkers
  • Chronic heart failure

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine


Dive into the research topics of 'Multiple biomarkers for risk prediction in chronic heart failure'. Together they form a unique fingerprint.

Cite this