Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease (ESKD). Prognostic biomarkers re-flective of underlying molecular mechanisms are critically needed for effective management of DKD. A three-marker panel was derived from a proteomics analysis of plasma samples by an unbiased machine learning approach from participants (N = 58) in the Clinical Phenotyping and Re-source Biobank study. In combination with standard clinical parameters, this panel improved prediction of the composite outcome of ESKD or a 40% decline in glomerular filtration rate. The panel was validated in an independent group (N = 68), who also had kidney transcriptomic profiles. One marker, plasma angiopoietin 2 (ANGPT2), was signifi-cantly associated with outcomes in cohorts from the Cardiovascular Health Study (N = 3,183) and the Chinese Cohort Study of Chronic Kidney Disease (N = 210). Glomerular transcriptional angiopoietin/Tie (ANG-TIE) pathway scores, derived from the expression of 154 ANG-TIE signaling mediators, correlated positively with plasma ANGPT2 levels and kidney outcomes. Higher receptor expression in glomeruli and higher ANG-TIE pathway scores in endothelial cells corroborated potential functional effects in the kidney from elevated plasma ANGPT2 levels. Our work suggests that ANGPT2 is a promising prognostic endothelial biomarker with likely functional impact on glomerular pathogenesis in DKD.
Original language | English (US) |
---|---|
Pages (from-to) | 2664-2676 |
Number of pages | 13 |
Journal | Diabetes |
Volume | 71 |
Issue number | 12 |
DOIs | |
State | Published - Dec 2022 |
Externally published | Yes |
ASJC Scopus subject areas
- Internal Medicine
- Endocrinology, Diabetes and Metabolism