Mueller Polarimetry for Quantifying the Stress Optic Coefficient in the Infrared

Jeremy Parkinson, Patrick Coronato, Jake Greivenkamp, Daniel Vukobratovich, Meredith Kupinski

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

The stress optic coefficient of an infrared transmitting material was measured at room temperature at a wavelength of 1550nm. This work discusses a Mueller matrix imaging experiment to measure the stress optic coefficient, observe the spatial distribution of birefringence, and quantify experimental sources of uncertainty. A one-inch diameter disk of sample material was diametrically loaded with increasing force, and linear retardance was measured in the central region. Finite element and analytical modeling was done to estimate the magnitude of stress in this central region. A Rotating Retarder Mueller Matrix Imaging Polarimeter measured the spatial distribution of linear retardance. The retardance is related to the change in birefringence with stress magnitude. The slope of this linear fit is the stress optic coefficient. The stress optic coefficient of the infrared transmitting material was measured to be 1.89 ± 0.1424 [TPa]−1. To test the precision of our stress optic coefficient measurement procedure, a 1-inch diameter N-BK7 disk was measured at a wavelength of 1550nm and compared with industry-accepted values. The stress optic coefficient of N-BK7 was measured as 2.83 ± 0.1057[TPa]−1. The published N-BK7 value measured at visible wavelengths is 2.77 [TPa]−1 ± 3%.1-3 This agreement validates the experimental Mueller matrix imaging methods and supports the common assumption of minor wavelength dependence of the stress optic coefficient.

Original languageEnglish (US)
Title of host publicationPolarization Science and Remote Sensing XI
EditorsMeredith K. Kupinski, Joseph A. Shaw, Frans Snik
PublisherSPIE
ISBN (Electronic)9781510665941
DOIs
StatePublished - 2023
EventPolarization Science and Remote Sensing XI 2023 - San Diego, United States
Duration: Aug 21 2023Aug 22 2023

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12690
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferencePolarization Science and Remote Sensing XI 2023
Country/TerritoryUnited States
CitySan Diego
Period8/21/238/22/23

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Mueller Polarimetry for Quantifying the Stress Optic Coefficient in the Infrared'. Together they form a unique fingerprint.

Cite this