Movement of Sediment Through a Burned Landscape: Sediment Volume Observations and Model Comparisons in the San Gabriel Mountains, California, USA

F. K. Rengers, Luke A. McGuire, Jason W. Kean, Dennis M. Staley, Mariana Dobre, Peter R. Robichaud, Tyson Swetnam

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Post-wildfire changes to hydrologic and geomorphic systems can lead to widespread sediment redistribution. Understanding how sediment moves through a watershed is crucial for assessing hazards, developing debris flow inundation models, engineering sediment retention solutions, and quantifying the role that disturbances play in landscape evolution. In this study, we used terrestrial and airborne lidar to measure sediment redistribution in the 2016 Fish Fire, in the San Gabriel Mountains in southern California, USA. The lidar areas are in two adjacent watersheds, at spatial scales of 900 m2 to 4 km2, respectively. Terrestrial lidar data were acquired prior to rainfall, and two subsequent surveys show erosional change after rainstorms. Two airborne lidar flights occurred (1) 7 months before, and (2) 14 months after the fire ignition, capturing the erosional effects after rainfall. We found hillslope erosion dominated the overall sediment budget in the first rainy season after wildfire. Only 7% of the total erosion came from the active channel bed and channel banks, and the remaining 93% of eroded sediment was derived from hillslopes. Within the channelized portion of the watershed erosion/deposition could be generally described with topographic metrics used in a stream power equation. Observed sediment volumes were compared with four empirical models and one process-based model. We found that the best predictions of sediment volume were obtained from an empirical model developed in the same physiographic region. Moreover, this study showed that post-wildfire erosion rates in the San Gabriel Mountains attain the same magnitude as millennial time scale bedrock erosion rates.

Original languageEnglish (US)
Article numbere2020JF006053
JournalJournal of Geophysical Research: Earth Surface
Volume126
Issue number7
DOIs
StatePublished - Jul 2021

Keywords

  • geomorphology
  • lidar
  • sediment
  • wildfire

ASJC Scopus subject areas

  • Geophysics
  • Earth-Surface Processes

Fingerprint

Dive into the research topics of 'Movement of Sediment Through a Burned Landscape: Sediment Volume Observations and Model Comparisons in the San Gabriel Mountains, California, USA'. Together they form a unique fingerprint.

Cite this