Mouse phospholamban gene expression during development in vivo and in vitro

John R. Ganim, Wusheng Luo, Sathivel Ponniah, Ingrid Grupp, Hae Won Kim, Donald G. Ferguson, Vivek Kadambi, Jon C. Neumann, Thomas Doetschman, Evangelia G. Kranias

Research output: Contribution to journalArticlepeer-review

55 Scopus citations


To establish a murine model that may allow for definition of the precise role of phospholamban in myocardial contractility through selective perturbations in the phospholamban gene, we initiated studies on the role of phospholamban in the murine heart. Intact beating hearts were perfused in the absence or presence of isoproterenol, and quantitative measurements of cardiac performance were obtained. Isoproterenol stimulation was associated with increases in the affinity of the sarcoplasmic reticulum Ca2+ pump for Ca2+ that were due to phospholamban phosphorylation. To assess the regulation of phospholamban gene expression during murine development, Northern blot and polymerase chain reaction analyses were used. Phospholamban mRNA was first detected in murine embryos on the ninth day of development (the time when the cardiac tube begins to contract). In murine embryoid bodies, which have been shown to recapitulate several aspects of cardiogenesis, phospholamban mRNA was detected on the seventh day (the time when spontaneous contractions are first observed). Only those embryoid bodies that exhibited contractions expressed phospholamban transcripts, and these were accompanied by expression of the protein, as revealed by immunofluorescence microscopy. Sequence analysis of the cDNA encoding phospholamban in embryoid bodies indicated complete homology to that in adult hearts. The deduced amino acid sequence of murine phospholamban was identical to rabbit cardiac phospholamban but different from dog cardiac and human cardiac phospholamban by one amino acid. These data suggest that phospholamban, the regulator of the Ca2+-ATPase in cardiac sarcoplasmic reticulum, is present very early in murine cardiogenesis in utero and in vitro, and this may constitute an important determinant for proper development of myocardial contractility.

Original languageEnglish (US)
Pages (from-to)1021-1030
Number of pages10
JournalCirculation research
Issue number5
StatePublished - Nov 1992


  • Development
  • Embryoid bodies
  • Heart
  • Mouse
  • Phospholamban

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine


Dive into the research topics of 'Mouse phospholamban gene expression during development in vivo and in vitro'. Together they form a unique fingerprint.

Cite this