Mountains on Titan: Modeling and observations

Giuseppe Mitri, Michael T. Bland, Adam P. Showman, Jani Radebaugh, Bryan Stiles, Rosaly M.C. Lopes, Jonathan I. Lunine, Robert T. Pappalardo

Research output: Contribution to journalArticlepeer-review

50 Scopus citations


We have developed a thermal model of Titan's interior to study changes in volume during partial freezing or melting of a subsurface ocean due to heat flux variations from the interior. We find that the long-term cooling of Titan can cause global volume contraction V/V ∼0.01. We then simulate two-dimensional contractional deformation of Titan's icy lithosphere, finding that contractional deformation can produce tectonic activity and fold formation. Folds could potentially achieve a topographic height of several kilometers for high local strain (∼0.16), and for high temperature gradients in the ice I shell (order of 10 K km-1), corresponding to an ancient high heat flux from the interior (order of 0.02-0.06 W m-2). Examination of Synthetic Aperture Radar (SAR) imagery obtained by Cassini Radar shows possible evidence of contractional tectonism in the equatorial regions of Titan, although the moderate resolution of the Cassini SAR imagery does not permit an unambiguous geological interpretation.

Original languageEnglish (US)
Article numberE10002
JournalJournal of Geophysical Research: Planets
Issue number10
StatePublished - 2010
Externally publishedYes

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science


Dive into the research topics of 'Mountains on Titan: Modeling and observations'. Together they form a unique fingerprint.

Cite this