TY - JOUR
T1 - Motor planning error
T2 - Toward measuring cognitive frailty in older adults using wearables
AU - Zhou, He
AU - Lee, Hyoki
AU - Lee, Jessica
AU - Schwenk, Michael
AU - Najafi, Bijan
N1 - Funding Information:
Acknowledgments: Partial support was provided by the National Institutes of Health/National Institute on Aging (award number 2R42AG032748), the National Institutes of Health/National Cancer Institute (award number 1R21CA190933-01A1), Baylor College of Medicine, and Michael E. DeBakey Department of Surgery. The content is solely the responsibility of the authors and does not necessarily represent the official views of sponsors. We thank Ana Enriquez and Ivan Marin for assisting with data collection and coordination of this research study between involved key investigators.
Funding Information:
Partial support was provided by the National Institutes of Health/National Institute on Aging (award number 2R42AG032748), the National Institutes of Health/National Cancer Institute (award number 1R21CA190933-01A1), Baylor College of Medicine, and Michael E. DeBakey Department of Surgery. The content is solely the responsibility of the authors and does not necessarily represent the official views of sponsors. We thank Ana Enriquez and Ivan Marin for assisting with data collection and coordination of this research study between involved key investigators.
Publisher Copyright:
© 2018 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2018/3/20
Y1 - 2018/3/20
N2 - Practical tools which can be quickly administered are needed for measuring subtle changes in cognitive–motor performance over time. Frailty together with cognitive impairment, or ‘cognitive frailty’, are shown to be strong and independent predictors of cognitive decline over time. We have developed an interactive instrumented trail-making task (iTMT) platform, which allows quantification of motor planning error (MPE) through a series of ankle reaching tasks. In this study, we examined the accuracy of MPE in identifying cognitive frailty in older adults. Thirty-two older adults (age = 77.3 ± 9.1 years, body-mass-index = 25.3 ± 4.7 kg/m2, female = 38%) were recruited. Using either the Mini-Mental State Examination or Montreal Cognitive Assessment (MoCA), 16 subjects were classified as cognitive-intact and 16 were classified as cognitive-impaired. In addition, 12 young-healthy subjects (age = 26.0 ± 5.2 years, body-mass-index = 25.3 ± 3.9 kg/m2, female = 33%) were recruited to establish a healthy benchmark. Subjects completed the iTMT, using an ankle-worn sensor, which transforms ankle motion into navigation of a computer cursor. The iTMT task included reaching five indexed target circles (including numbers 1-to-3 and letters A&B placed in random order) on the computer-screen by moving the ankle-joint while standing. The ankle-sensor quantifies MPE through analysis of the pattern of ankle velocity. MPE was defined as percentage of time deviation between subject’s maximum ankle velocity and the optimal maximum ankle velocity, which is halfway through the reaching pathway. Data from gait tests, including single task and dual task walking, were also collected to determine cognitive–motor performance. The average MPE in young-healthy, elderly cognitive-intact, and elderly cognitive-impaired groups was 11.1 ± 5.7%, 20.3 ± 9.6%, and 34.1 ± 4.2% (p < 0.001), respectively. Large effect sizes (Cohen’s d = 1.17–4.56) were observed for discriminating between groups using MPE. Significant correlations were observed between the MPE and MoCA score (r = −0.670, p < 0.001) as well as between the MPE and dual task stride velocity (r = −0.584, p < 0.001). This study demonstrated feasibility and efficacy of estimating MPE from a practical wearable platform with promising results in identifying cognitive–motor impairment and potential application in assessing cognitive frailty. The proposed platform could be also used as an alternative to dual task walking test, where gait assessment may not be practical. Future studies need to confirm these observations in larger samples.
AB - Practical tools which can be quickly administered are needed for measuring subtle changes in cognitive–motor performance over time. Frailty together with cognitive impairment, or ‘cognitive frailty’, are shown to be strong and independent predictors of cognitive decline over time. We have developed an interactive instrumented trail-making task (iTMT) platform, which allows quantification of motor planning error (MPE) through a series of ankle reaching tasks. In this study, we examined the accuracy of MPE in identifying cognitive frailty in older adults. Thirty-two older adults (age = 77.3 ± 9.1 years, body-mass-index = 25.3 ± 4.7 kg/m2, female = 38%) were recruited. Using either the Mini-Mental State Examination or Montreal Cognitive Assessment (MoCA), 16 subjects were classified as cognitive-intact and 16 were classified as cognitive-impaired. In addition, 12 young-healthy subjects (age = 26.0 ± 5.2 years, body-mass-index = 25.3 ± 3.9 kg/m2, female = 33%) were recruited to establish a healthy benchmark. Subjects completed the iTMT, using an ankle-worn sensor, which transforms ankle motion into navigation of a computer cursor. The iTMT task included reaching five indexed target circles (including numbers 1-to-3 and letters A&B placed in random order) on the computer-screen by moving the ankle-joint while standing. The ankle-sensor quantifies MPE through analysis of the pattern of ankle velocity. MPE was defined as percentage of time deviation between subject’s maximum ankle velocity and the optimal maximum ankle velocity, which is halfway through the reaching pathway. Data from gait tests, including single task and dual task walking, were also collected to determine cognitive–motor performance. The average MPE in young-healthy, elderly cognitive-intact, and elderly cognitive-impaired groups was 11.1 ± 5.7%, 20.3 ± 9.6%, and 34.1 ± 4.2% (p < 0.001), respectively. Large effect sizes (Cohen’s d = 1.17–4.56) were observed for discriminating between groups using MPE. Significant correlations were observed between the MPE and MoCA score (r = −0.670, p < 0.001) as well as between the MPE and dual task stride velocity (r = −0.584, p < 0.001). This study demonstrated feasibility and efficacy of estimating MPE from a practical wearable platform with promising results in identifying cognitive–motor impairment and potential application in assessing cognitive frailty. The proposed platform could be also used as an alternative to dual task walking test, where gait assessment may not be practical. Future studies need to confirm these observations in larger samples.
KW - Alzheimer’s disease
KW - Ankle reaching task
KW - Cognitive frailty
KW - Cognitive-Motor impairment
KW - Dual task walking
KW - Instrumented trail-making task
KW - Motor planning error
KW - Wearable
UR - http://www.scopus.com/inward/record.url?scp=85044279367&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85044279367&partnerID=8YFLogxK
U2 - 10.3390/s18030926
DO - 10.3390/s18030926
M3 - Article
C2 - 29558436
AN - SCOPUS:85044279367
VL - 18
JO - Sensors
JF - Sensors
SN - 1424-8220
IS - 3
M1 - 926
ER -