More chips off of Asteroid (4) Vesta: Characterization of eight Vestoids and their HED meteorite analogs

Paul S. Hardersen, Vishnu Reddy, Rachel Roberts, Amy Mainzer

Research output: Contribution to journalArticlepeer-review

23 Scopus citations


Vestoids are generally considered to be fragments from Asteroid (4) Vesta that were ejected by past collisions that document Vesta's collisional history. Dynamical Vestoids are defined by their spatial proximity with Vesta (Zappala, V., Bendjoya, Ph., Cellino, A., Farinella, P., Froeschle', C. [1995]. Icarus 116, 291-314; Nesvorny, D. [2012]. Nesvorny HCM Asteroid Families V2.0. EAR-A-VARGBDET-5-NESVORNYFAM-V2.0. NASA Planetary Data System.). Taxonomic Vestoids are defined as V-type asteroids that have a photometric, visible-wavelength spectral, or other observational relationship with Vesta (Tholen, D.J., 1984. Asteroid Taxonomy from Cluster Analysis of Photometry. Ph.D. Thesis, University of Arizona, Tucson; Bus, S.J., Binzel, R.P. [2002]. Icarus 158, 106-145; Carvano, J., Hasselmann, P.H., Lazzaro, D., Mothe'-Diniz, T. [2010]. Astron. Astrophys. 510, A43). We define 'genetic Vestoids' as V-type asteroids that are probable fragments ejected from (4) Vesta based on the supporting combination of dynamical, near-infrared (NIR) spectral, and taxonomic evidence. NIR reflectance spectroscopy is one of the primary ground-based techniques to constrain an asteroid's major surface mineralogy (Burns, R.G. [1993a]. Mineralogical Applications of Crystal Field Theory. Cambridge University Press, Cambridge, UK, 551 p). Despite the reasonable likelihood that many dynamical and taxonomic Vestoids likely originate from Vesta, ambiguity exists concerning the fraction of these populations that are from Vesta as compared to the fraction of asteroids that might not be related to Vesta.Currently, one of the most robust techniques to identify the genetic Vestoid population is through NIR reflectance spectroscopy from ~0.7 to 2.5. μm. The derivation of spectral band parameters, and the comparison of those band parameters with those from representative samples from the Howardite-Eucrite-Diogenite (HED) meteorite types, allows a direct comparison of their primary mineralogies. Establishing tighter constraints on the genetic Vestoid population will better inform mass estimates for the current population of probable Vestoids, will provide more accurate orbital information of Vestoid migration through time that will assist dynamical models, and will constrain the overall current abundance of basaltic material in the main asteroid belt (Moskovitz, N.A., Jedicke, R., Gaidos, E., Willman, M., Nesvorny, D., Fevig, R. [2008]. Icarus 198, 77-90).This work reports high-quality NIR spectra, and their respective interpretations, for eight Vp-type asteroids, as defined by Carvano et al. (Carvano, J., Hasselmann, P.H., Lazzaro, D., Mothe'-Diniz, T. [2010]. Astron. Astrophys. 510, A43), that were observed at the NASA Infrared Telescope Facility on January 14, 2013 UT. They include: (3867) Shiretoko, (5235) Jean-Loup, (5560) Amytis, (6331) 1992 FZ1, (6976) Kanatsu, (17469) 1991 BT, (29796) 1999 CW77, and (30872) 1992 EM17. All eight asteroids exhibit the broad ~0.9- and ~1.9-μm mineral absorption features indicative of pyroxene on each asteroid's surface. Data reduction and analysis via multiple techniques produced consistent results for the derived spectral absorption band centers and average pyroxene surface chemistries for all eight asteroids (Reddy, V., Sanchez, J.A., Nathues, A., Moskovitz, N.A., Li, J.-Y, Cloutis, E.A., Archer, K., Tucker, R.A., Gaffey, M.J., Mann, P.J., Sierks, H., Schade, U. [2012c]. Icarus 217, 153-168; Lindsay, S.S., Emery, J.P., Marchis, F., Enriquez, J., Assafin, M. [2013]. A spectroscopic and mineralogic study of multiple asteroid systems. American Astronomical Society, DPS Meeting #45, #112.04; Lindsay, S.S., Marchis, F., Emery, J.P., Enriquez, J.E., Assafin, M. [2014]. Icarus, submitted for publication; Gaffey, M.J., Cloutis, E.A., Kelley, M.K., Reed, K.L. [2002]. Mineralogy of asteroids. In: Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (Eds.), Asteroids III. The University of Arizona Press, Tucson, pp. 183-204; Burbine, T.H., Buchanan, P.C., Dolkar, T., Binzel, R.P. [2009]. Met. Planet. Sci. 44, 1331-1341.). (3867) Shiretoko is most consistent with the eucrite meteorites while the remaining seven asteroids are most consistent with the howardite meteorites. The existing evidence suggests that all eight of these Vp-type asteroids are genetic Vestoids that probably originated from Vesta's surface.

Original languageEnglish (US)
Pages (from-to)269-282
Number of pages14
StatePublished - Dec 1 2014
Externally publishedYes


  • Asteroids
  • Asteroids, composition
  • Mineralogy
  • Spectroscopy

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'More chips off of Asteroid (4) Vesta: Characterization of eight Vestoids and their HED meteorite analogs'. Together they form a unique fingerprint.

Cite this