Molecular characterization of a bacteriophage (Chp2) from Chlamydia psittaci

B. L. Liu, J. S. Everson, B. Fane, P. Giannikopoulou, E. Vretou, P. R. Lambden, I. N. Clarke

Research output: Contribution to journalArticlepeer-review

49 Scopus citations


Comparisons of the proteome of abortifacient Chlamydia psittaci isolates from sheep by two-dimensional gel electrophoresis identified a novel abundant protein with a molecular mass of 61.4 kDa and an isoelectric point of 6.41. C-terminal sequence analysis of this protein yielded a short peptide sequence that had an identical match to the viral coat protein (VP1) of the avian chlamydiaphage Chp1. Electron microscope studies revealed the presence of a 25-nm-diameter bacteriophage (Chp2) with no apparent spike structures. Thin sections of chlamydia-infected cells showed that Chp2 particles were located to membranous structures surrounding reticulate bodies (RBs), suggesting that Chp2 is cytopathic for ovine C. psittaci RBs. Chp2 double-stranded circular replicative-form DNA was purified and used as a template for DNA sequence analysis. The Chp2 genome is 4,567 bp and encodes up to eight open reading frames (ORFs); it is similar in overall organization to the Chp1 genome. Seven of the ORFs (1 to 5, 7, and 8) have sequence homologies with Chp1. However, ORF 6 has a different spatial location and no cognate partner within the Chp1 genome. Chlamydiaphages have three viral structural proteins, VP1, VP2, and VP3, encoded by ORFs 1 to 3, respectively. Amino acid residues in the ΦX174 procapsid known to mediate interactions between the viral coat protein and internal scaffolding proteins are conserved in the Chp2 VP1 and VP3 proteins. We suggest that VP3 performs a scaffolding-like function but has evolved into a structural protein.

Original languageEnglish (US)
Pages (from-to)3464-3469
Number of pages6
JournalJournal of virology
Issue number8
StatePublished - 2000

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology


Dive into the research topics of 'Molecular characterization of a bacteriophage (Chp2) from Chlamydia psittaci'. Together they form a unique fingerprint.

Cite this