Modulation of pulmonary endothelial endothelin B receptor expression and signaling: Implications for experimental hepatopulmonary syndrome

Liping Tang, Bao Luo, Rakesh P. Patel, Yiqun Ling, Junlan Zhang, Michael B. Fallon

Research output: Contribution to journalArticlepeer-review

54 Scopus citations


The hepatopulmonary syndrome (HPS) results from intrapulmonary vasodilation in the setting of cirrhosis and portal hypertension. In experimental HPS, pulmonary endothelial endothelin B (ETB) receptor overexpression and increased circulating endothelin-1 (ET-1) contribute to vasodilation through enhanced endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) production. In both experimental cirrhosis and prehepatic portal hypertension, ETB receptor overexpression correlates with increased vascular shear stress, a known modulator of ETB receptor expression. We investigated the mechanisms of pulmonary endothelial ETB receptor-mediated eNOS activation by ET-1 in vitro and in vivo. The effect of shear stress on ET B receptor expression was assessed in rat pulmonary microvascular endothelial cells (RPMVECs). The consequences of ETB receptor overexpression on ET-1-dependent ETB receptor-mediated eNOS activation were evaluated in RPMVECs and in prehepatic portal hypertensive animals exposed to exogenous ET-1. Laminar shear stress increased ETB receptor expression in RPMVECs without altering mRNA stability. Both shear-mediated and targeted overexpression of the ETB receptor enhanced ET-1-mediated ETB receptor-dependent eNOS activation in RPMVECs through Ca2+-mediated signaling pathways and independent of Akt activation. In prehepatic portal hypertensive animals relative to control, ET-1 administration also activated eNOS independent of Akt activation and triggered HPS. These findings support that increased pulmonary microvascular endothelial ETB receptor expression modulates ET-1-mediated eNOS activation, independent of Akt, and contributes to the development of HPS.

Original languageEnglish (US)
Pages (from-to)L1467-L1472
JournalAmerican Journal of Physiology - Lung Cellular and Molecular Physiology
Issue number6
StatePublished - Jun 2007


  • Akt
  • Endothelial nitric oxide synthase
  • Shear stress

ASJC Scopus subject areas

  • Physiology
  • Pulmonary and Respiratory Medicine
  • Physiology (medical)
  • Cell Biology


Dive into the research topics of 'Modulation of pulmonary endothelial endothelin B receptor expression and signaling: Implications for experimental hepatopulmonary syndrome'. Together they form a unique fingerprint.

Cite this