TY - JOUR
T1 - Model projections of rapid sea-level rise on the northeast coast of the United States
AU - Yin, Jianjun
AU - Schlesinger, Michael E.
AU - Stouffer, Ronald J.
N1 - Funding Information:
We thank T. L. Delworth, J. M. Gregory, A. Hu, T. F. Stocker, G. A. Vecchi and M. Winton for comments and suggestions. We also thank many others at GFDL for carrying out the IPCC AR4 integrations and providing computer and model support. We acknowledge other climate modelling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI), the WCRP’s Working Group on Coupled Modelling (WGCM) and the Office of Science, US Department of Energy. J.Y. is supported by the US Department of Energy (Grant No. DE-FG02-07ER64470).
PY - 2009/4
Y1 - 2009/4
N2 - Human-induced climate change could cause global sea-level rise. Through the dynamic adjustment of the sea surface in response to a possible slowdown of the Atlantic meridional overturning circulation, a warming climate could also affect regional sea levels, especially in the North Atlantic region, leading to high vulnerability for low-lying Florida and western Europe. Here we analyse climate projections from a set of state-of-the-art climate models for such regional changes, and find a rapid dynamical rise in sea level on the northeast coast of the United States during the twenty-first century. For New York City, the rise due to ocean circulation changes amounts to 15, 20 and 21 cm for scenarios with low, medium and high rates of emissions respectively, at a similar magnitude to expected global thermal expansion. Analysing one of the climate models in detail, we find that a dynamic, regional rise in sea level is induced by a weakening meridional overturning circulation in the Atlantic Ocean, and superimposed on the global mean sea-level rise. We conclude that together, future changes in sea level and ocean circulation will have a greater effect on the heavily populated northeastern United States than estimated previously.
AB - Human-induced climate change could cause global sea-level rise. Through the dynamic adjustment of the sea surface in response to a possible slowdown of the Atlantic meridional overturning circulation, a warming climate could also affect regional sea levels, especially in the North Atlantic region, leading to high vulnerability for low-lying Florida and western Europe. Here we analyse climate projections from a set of state-of-the-art climate models for such regional changes, and find a rapid dynamical rise in sea level on the northeast coast of the United States during the twenty-first century. For New York City, the rise due to ocean circulation changes amounts to 15, 20 and 21 cm for scenarios with low, medium and high rates of emissions respectively, at a similar magnitude to expected global thermal expansion. Analysing one of the climate models in detail, we find that a dynamic, regional rise in sea level is induced by a weakening meridional overturning circulation in the Atlantic Ocean, and superimposed on the global mean sea-level rise. We conclude that together, future changes in sea level and ocean circulation will have a greater effect on the heavily populated northeastern United States than estimated previously.
UR - http://www.scopus.com/inward/record.url?scp=67649526449&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67649526449&partnerID=8YFLogxK
U2 - 10.1038/ngeo462
DO - 10.1038/ngeo462
M3 - Article
AN - SCOPUS:67649526449
SN - 1752-0894
VL - 2
SP - 262
EP - 266
JO - Nature Geoscience
JF - Nature Geoscience
IS - 4
ER -